Effect of Atmosphere on Zinc Oxide Crystal Growth by Electric Current Heating with Au Catalyst


Article Preview

We developed a new zinc oxide (ZnO) crystal growth method using Au combined with electric current heating. Au paste was placed on a ZnO ceramic bar. When a certain current flowed through the bar, the paste melted on the bar. Then crystals grew on the molten Au surface immediately. The shape of the crystals depended on the atmosphere during the growth. The whiskers with spherical top and the crystals consisting of a hexangular pyramidal base and needle head were grown on Au in air and Ar atmosphere, respectively. From cathodoluminescence at room temperature, the weak ultraviolet (UV) emission at approximately 3.2 eV and the strong visible emission at approximately 2.3 eV were observed from the whisker grown in air. The UV emission at approximately 3.3 eV dominated a spectrum from the pyramidal crystal grown in Ar atmosphere.



Advanced Materials Research (Volumes 11-12)

Main Theme:

Edited by:

Masayuki Nogami, Riguang Jin, Toshihiro Kasuga and Wantai Yang




K. Minato et al., "Effect of Atmosphere on Zinc Oxide Crystal Growth by Electric Current Heating with Au Catalyst", Advanced Materials Research, Vols. 11-12, pp. 269-272, 2006

Online since:

February 2006




[1] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang: Science Vol. 292 (2001), p.1897.

[2] H. Nanto, T. Minami and S. Takata: Phys. Stat. Sol. Vol. A65 (1981), p. K131.

[3] R.D. Vispute, V. Talyansky, S. Choopun, R.P. Sharma, T. Venkatesan, M. He, X. Tang, J.B. Halpern, M.G. Spencer, Y.X. Li, L.G. Salamanca-Riba, A.A. Iliadis and K.A. Jones: Appl. Phys. Lett. Vol. 73 (1998), p.348.

DOI: https://doi.org/10.1063/1.121830

[4] S. Bethke, H. Pan and B.W. Wesseis: Appl. Phys. Lett. Vol. 52 (1988), p.138.

[5] K. Minato, D. Nezaki, T. Okamoto and M. Takata: Key. Eng. Mater. Vol. 248 (2003), p.95.

[6] D. Nezaki, T. Okamoto and M. Takata: Key Eng. Mater. Vol. 228-229 (2002), p.241.

[7] D. Nezaki, T. Okamoto and M. Takata: Trans. MRS-J. Vol. 25 (2000), p.205.

[8] M. Takata, K. Minato, T. Okamoto, S. Matsuura and K. Ogawa: Japan Patent 170364 (2004).

[9] R.S. Wagnar and W.C. Ellis: Appl. Phys. Lett. Vol. 4 (1964), p.89.

[10] I.N. Stranski and L. Krastanow: Akad. Wiss. Math-Nat. K1. IIb Vol. 146 (1938), p.89.

[11] J. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt and B.E. Guade: J. Appl. Phys. Vol. 79 (1996), p.7983.