Theoretical Estimation of Catalytic Reactivity as Iron-Oxygen Nano-Materials

Abstract:

Article Preview

With a view to understanding the reactivity of the μ-peroxo diiron(III) complexes in biological oxidation enzymes, such as soluble methane monooxygenase (sMMO) and ribonucleotide reductase (RNR), cis-μ-1,2- and trans-μ-1,2-peroxo diiron complexes were theroretically treated by the use of DFT calculation. Full-optimizations of the structures were carried out using the initial structures of (μ-O2-)(μ-CH3COO-)(μ-O2 2-)[FeIII(A3CY)]2 + and (μ-O2 2- )[FeIII(A3CY)Cl2]2 (A3CY = cis,cis-1,3,5-tris-amino-cyclohexane) for cis- and trans-forms, respectively, by minimizing their total energies. The O-O stretching vibrations were estimated for both isomers; the 16O-16O stretching frequencies for peroxo diiron complexes with cis- and transforms were 840 and 769 cm-1, respectively, which showed an isotope shift to 791 and 724 cm-1, respectively, by the use of 18O2 2- in the place of 16O2 2-. The structure/function relationship for them was discussed.

Info:

Periodical:

Advanced Materials Research (Volumes 11-12)

Main Theme:

Edited by:

Masayuki Nogami, Riguang Jin, Toshihiro Kasuga and Wantai Yang

Pages:

339-342

DOI:

10.4028/www.scientific.net/AMR.11-12.339

Citation:

Y. Honda et al., "Theoretical Estimation of Catalytic Reactivity as Iron-Oxygen Nano-Materials", Advanced Materials Research, Vols. 11-12, pp. 339-342, 2006

Online since:

February 2006

Export:

Price:

$35.00

[1] B.J. Wallar and J.D. Lipscomb: Chem. Rev. Vol. 96 (1996), p.2625.

[2] E.I. Solomon, T.C. Brunold, M.I. Davis, J.N. Kemsley, S. -K. Lee, N. Lehnert, F. Neese, A.J. Skulan, Y. -S. Yang and J. Zhou: Chem. Rev. Vol. 100 (2000), p.235.

DOI: 10.1021/cr9900275

[3] K.E. Liu and S.J. Lippard: Advances in Inorganic Chemistry Vol. 42 (Academic Press, Inc., 1995).

[4] D.A. Whittington and S.J. Lippard: J. Am. Chem. Soc. Vol. 123 (2001), p.827.

[5] E.Y. Tshuva and S.J. Lippard: Chem. Rev. Vol. 104 (2004), p.987.

[6] K. Kim and S.J. Lippard: J. Am. Chem. Soc. Vol. 188 (1996), p.4914.

[7] T. Ookubo, H. Sugimoto, T. Nagayama, H. Masuda, T. Sato, K. Tanaka, Y. Maeda, H. Okawa, Y. Hayashi, A. Uehara and M. Suzuki: J. Am. Chem. Soc. Vol. 188 (1996), p.701.

DOI: 10.1021/ja953705n

[8] Y. Dong, S. Yan, V.G. Young Jr. and L. Que Jr.: Angew. Chem. Int. Ed. Engl. Vol. 35 (1996), p.618.

[9] H. Arii, S. Ishikawa, Y. Saito, T. Tosha, S. Nagatomo, T. Kitagawa, Y. Funahashi, T. Ozawa, K. Jitsukawa and H. Masuda: submitted for publication (2005).

[10] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin and J.C. Burant: GAUSSIAN 03 (Gaussian, Pittsburgh), Revision B. 03, (2003).

[11] A.G. Orpen, L. Brammer, F.H. Allen, O. Kennard, D.G. Watson and R. Taylor: J. Chem. Soc., Dalton Trans. (1989), p. S1.

In order to see related information, you need to Login.