Normal and Abnormal Grain Growth in Ceramics - NbC-Co and Alumina

Abstract:

Article Preview

Normal and abnormal grain growth has been observed in 70NbC-30Co with varying B concentrations at 1450°C and in alumina with varying impurity and additive concentrations at 1600°C -1650°C as typical systems with and without liquid matrix. The grain growth behavior depends on the roughening of the interfaces as indicated by the grain and grain boundary shapes. When 4% B is added to 70NbC-30Co, the NbC grains in Co-rich liquid matrix are spherical and undergo diffusion controlled normal growth, because the grain-liquid interface is rough. As the B concentration is decreased to 3, 2, 1, and 0%, the NbC grains become more cubic and the tendency for abnormal grain growth increases because of the step growth mechanism of the flat singular surface segments. When compacts of high purity alumina powder are sintered at 1650°C, the grain boundaries are smoothly curved, indicating their atomically rough structures. With increasing impurity content—in particular SiO2—in the alumina powder, abnormal grain growth becomes more pronounced with increasing number of flat grain boundaries. These singular grain boundaries are expected to move by a step mechanism and thus cause the abnormal grain growth. These results show that the interface roughening and hence the grain growth mode changes gradually with the additive or impurity concentrations. Therefore, the abnormal grain growth cannot be sharply distinguished from the normal grain growth as has been previously suggested in general and for alumina in particular.

Info:

Periodical:

Advanced Materials Research (Volumes 11-12)

Main Theme:

Edited by:

Masayuki Nogami, Riguang Jin, Toshihiro Kasuga and Wantai Yang

Pages:

47-52

DOI:

10.4028/www.scientific.net/AMR.11-12.47

Citation:

J. H. Lee et al., "Normal and Abnormal Grain Growth in Ceramics - NbC-Co and Alumina", Advanced Materials Research, Vols. 11-12, pp. 47-52, 2006

Online since:

February 2006

Export:

Price:

$35.00

[1] Y.J. Park, N.M. Hwang and D.Y. Yoon: Metall. Mater. Trans. Vol. 27A (1996), p.2809.

[2] T.K. Kang and D.N. Yoon: Metall. Trans. Vol. 9A (1978).

[3] C.H. Kang and D.N. Yoon: Metall. Trans. Vol. 13A (1981), p.65.

[4] S.S. Kang and D.N. Yoon: Metall. Trans. Vol. 13A (1982), p.1405.

[5] J.H. Back, M.J. Kim and D.Y. Yoon: J. Am. Ceram. Soc. (2005), in press.

[6] Y.K. Cho, D.Y. Yoon and B.K. Kim: J. Am. Ceram. Soc. Vol. 87 (2004), p.443.

[7] Y.K. Cho, J.H. Choi, J.K. Park and D.Y. Yoon: Metall. Mater. Trans., in press.

[8] K.S. Oh, J.Y. Jun and D.Y. Kim: J. Am. Ceram. Soc. Vol. 83 (2000), p.3117.

[9] S.B. Lee, N.M. Hwang, D.Y. Yoon and M.F. Henry: Metall. Mater. Trans. Vol. 31A (2000), p.985.

[10] C.W. Park, D.Y. Yoon, J.E. Blendell and C.A. Handwerker: J. Am. Ceram. Soc. Vol. 86 (2003), p.603.

[11] S.B. Lee, S.Y. Choi, S.J.L. Kang and D.Y. Yoon: Z. Metallkd. Vol. 94 (2003), p.193.

[12] P. Wynblatt and N.A. Gjostein: Acta Metall. Vol. 24 (1976), p.1165.

[13] H. van Beijeren and I. Nolden, in: Structure and Dynamics of Surfaces II: Phenomena, Models, and Method, edited by W. Schommers and P. von Blanckenhagen, Springer-Verlag, Berlin (1987), p.259.

[14] J.M. Kosterlitz and D.J. Thouless: J. Phys. Vol. C6 (1973), p.1181.

[15] H.J. Leamy and G.H. Gilmer: J. Cryst. Growth Vol. 24/25 (1974), p.499.

[16] H. van Beijeren: Phys. Rev. Lett. Vol. 38 (1977), p.993.

[17] S. Balibar and B. Castaing: J. Physique Lett. Vol. 41 (1980), p. L-32.

[18] F. Gallet, S. Balibar and E. Rolley: J. Physique Vol. 48 (1987), p.369.

[19] M. Wortis, in: Chemistry and Physics of Solid Surfaces VII, edited by R. Banselow and R.F. Howe, Springer-Verlag, Berlin (1987), p.367.

[20] C. Rottman and M. Wortis: Phys. Rev. Vol. B29 (1984), p.328.

[21] J.C. Heyraud and J.J. Métois: J. Cryst. Growth Vol. 84 (1987), p.503.

[22] J.C. Heyraud and J.J. Métois: J. Cryst. Growth Vol. 50 (1980), p.571.

[23] T. Ohachi and I. Taniguchi: J. Cryst. Grwoth Vol. 65 (1983), p.84.

[24] T.E. Hsieh and R.W. Balluffi: Acta Metall. Vol. 37 (1989), p.2133.

[25] S.I. Bae and S. Baik: J. Am. Ceram. Soc. Vol. 76 (1993), p.1065.

[26] S.I. Bae and S. Baik: J. Mater. Sci. Vol. 28 (1993), p.4197.

[27] S.I. Bae and S. Baik: J. Am. Ceram. Soc. Vol. 77 (1994), p.2499.

[28] I.J. Bae and S. Baik: J. Am. Ceram. Soc. Vol. 80 (1997), p.1149.

[29] A.J. Ardell: Acta Metall. Vol. 20 (1972), p.61.

[30] C.W. Park and D.Y. Yoon: J. Am. Ceram. Soc. Vol. 83 (2000), p.2605.

[31] S.J. Cho, Y.C. Lee, K.J. Yoon, J.J. Kim, J.H. Hahn, H.M. Park and M. Yanagisawa: J. Am. Ceram. Soc. Vol. 84 (2001), p.1143.

[32] D.Y. Yoon and Y.K. Cho: J. Mater. Sci. Eng. Vol. 40 (2005), p.861.

[33] M.J. Kim, Y.K. Cho and D.Y. Yoon: J. Am. Ceram. Soc. Vol. 87 (2004), p.455.

[34] M.J. Kim, S.M. Kim and D.Y. Yoon: J. Am. Ceram. Soc. Vol. 87 (2004), p.507.

[35] S.J. Cho, unpublished work.

[36] S.J. Cho, Y.C. Lee, H.L. Lee, S.M. Sim and M. Yanagisawa: J. Eur. Ceram. Soc. Vol. 23 (2003), p.2281.

In order to see related information, you need to Login.