High-Efficient Eu3+ Red Emission due to Excitation Energy Transfer from Nano-Sized SnO2 Crystals


Article Preview

By overcoming less excitation efficiency of rare-earth ions due to small oscillator strength (∼10-6) of f-f transition, Eu3+ ions were intentionally introduced to nano-sized semiconductor of tin oxide (SnO2) in silica (SiO2)matrix via a sol-gel route. As a consequence, the excitation energy was significantly absorbed by the nano-sized SnO2 with controlled band-gap energy owing to quantum size effect (QSE) and subsequently transferred from nano-sized SnO2 to the Eu3+ ions doped, resulting in the enhancement of Eu3+ red emission (external quantum efficiency : 75.6 %).



Advanced Materials Research (Volumes 11-12)

Main Theme:

Edited by:

Masayuki Nogami, Riguang Jin, Toshihiro Kasuga and Wantai Yang




T. Hayakawa and M. Nogami, "High-Efficient Eu3+ Red Emission due to Excitation Energy Transfer from Nano-Sized SnO2 Crystals", Advanced Materials Research, Vols. 11-12, pp. 579-582, 2006

Online since:

February 2006




[1] Q.L. Liu, F.F. Xu and T. Tanaka: Appl. Phys. Lett. Vol. 81 (2002), p.3948.

[2] S.B. Aldabergenova, A. Osvet, G. Frank, H.P. Strunk, P.C. Taylor and A.A. Andreev: J. Non-Cryst. Solids Vol. 299-302 (2002), p.709.

[3] K.L. Frindell, M.H. Bartl, A. Popitsch and G.D. Stucky: Angew. Chem. Int. Ed. Vol. 41 (2002), p.960.

[4] O.M. Ntwaeaborwa and P.H. Holloway: Nanotech. Vol. 16 (2005), p.865.

[5] F. Gu, S.G. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu and D.R. Yuan: Opt. Mater. Vol. 25 (2004), p.59.

[6] T. Hayakawa, T. Enomoto and M. Nogami: J. Mater. Res. Vol. 17 (2002), p.1305.

[7] M. Nogami, T. Enomoto and T. Hayakawa: J. Lumin. Vol. 97 (2002), p.147.

[8] T. Hayakawa and M. Nogami: Sci. Tech. Adv. Mater. Vol. 6 (2005), p.66.

[9] P. Espinasse: SPIE's Oe magazine Oct. (2005), p.8.

[10] T. Hayakawa and M. Nogami: J. Appl. Phys. Vol. 90 (2001), p.2200.

[11] B. Grzeta, E. Tkalcec, C. Goebbert, M. Takeda, M. Takahashi, K. Nomura and J. Jaksic: J. Phys. Chem. Solids Vol. 63 (2002), p.765.

[12] T. Hayakawa, A. Hiramitsu and M. Nogami: Appl. Phys. Lett. Vol. 82 (2003), p.2975.

[13] M.S. Wrighton, D.S. Ginley and D.L. Morse: J. Phys. Chem. Vol. 78 (1974), p.2229.