Preparation of Ultrafine BaTiO3 and SrTiO3 Powders from Na2-xHxTi3O7 Nanowires via Hydrothermal Processing


Article Preview

BaTiO3 and SrTiO3 ultrafine powders are synthesized from sodium hydrogen titanate nanowires using hydrothermal route. Their preparation and purity depend strongly on the pH value of reaction system (the amount of added alkaline). Under the reaction condition of strong alkaline, the BaTiO3 phase can be obtained, but the SrTiO3 phase can not be easily prepared. Without the addition of any alkaline, the pure SrTiO3 phase can be synthesized. Reaction time also affects on the purity of BaTiO3 phase. Below 15 h of reaction time at reaction temperature 180°C, pure BaTiO3 phase can not be prepared. SEM measurement results show that the average diameter of BaTiO3 powders is about 200 nm and that of SrTiO3 submicrorods is about 300 nm. Their Raman spectra further demonstrate that the prepared products are BaTiO3 and SrTiO3 phases.



Advanced Materials Research (Volumes 11-12)

Main Theme:

Edited by:

Masayuki Nogami, Riguang Jin, Toshihiro Kasuga and Wantai Yang




T. H. Ji et al., "Preparation of Ultrafine BaTiO3 and SrTiO3 Powders from Na2-xHxTi3O7 Nanowires via Hydrothermal Processing", Advanced Materials Research, Vols. 11-12, pp. 603-606, 2006

Online since:

February 2006




[1] M.E. Lines and A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 2001).

[2] S. O'Brien, L. Brus and C.B. Murray: J. Am. Chem. Soc. Vol. 123 (2001), p.12085.

[3] H.J. Chen and Y.W. Chen: Ind. Eng. Chem. Res. Vol. 42 (2003), p.473.

[4] E. Ciftci, M.N. Rahaman and M. Shumsky: J. Mater. Sci. Vol. 36 (2001), p.4875.

[5] I.J. Clark, T. Takeuchi, N. Ohtori and D.C. Sinclair: J. Mater. Chem. Vol. 9 (1999), p.83.

[6] R.I. Walton, F. Millange, R.I. Smith, T.C. Hansen and D. O'Hare: J. Am. Chem. Soc. Vol. 123 (2001), p.12547.

[7] M. Niederberger, N. Pinna, J. Polleux and M. Antonietti: Angew. Chem. Int. Ed. Vol. 43 (2004), p.2270.

[8] (a) P.K. Dutta, R. Asiaie, S.A. Akbar and W. Zhu: Chem. Mater. Vol. 6 (1994), p.1542. (b) W. Li, E. Shi, Y. Zheng, S. Xia and Z. Yin: J. Chin. Ceram. Soc. Vol. 27 (1999), p.714.

[9] H.Y. Zhu, X.P. Gao, Y. Lan, D.Y. Song, Y.X. Xi and J.C. Zhao: J. Am. Chem. Soc. Vol. 126 (2004), p.8380.

[10] L. Kavan, M. Kalbac, M. Zukalova, I. Exnar, V. Lorenzen, R. Nesper and M. Grätzel: Chem. Mater. Vol. 16 (2004), p.477.

[11] T. Ji and H.B. Xu: Chinese Patent, Appl. No. 200410090609. 9.

[12] A.R. Armstrong, G. Armstrong, J. Canales and P.G. Bruce: Angew. Chem. Int. Ed. Vol. 43 (2004), p.2286.

[13] P. Pinceloup, C. Courtois et al.: J. Eur. Ceram. Soc. Vol. 19 (1999), p.973.

[14] D.A. Tenne, A.M. Clark, A.R. Tames, K. Chen and X.X. Xi: Appl. Phys. Lett. Vol. 79 (2001), p.3836.

[15] J. Petzelt, T. Ostapchuk, I. Gregora et al.: Phys. Rev. B Vol. 64 (2001), p.184111.

[16] G.J. Choi, S.K. Lee, J. Woo, K.K. Koo and Y.S. Cho: Chem. Mater. Vol. 10 (1998), p.4104.

[17] X. Sun and Y.D. Li: Chem. Eur. J. Vol. 9 (2003), p.2229.

Fetching data from Crossref.
This may take some time to load.