Angle Dependent Sputtering and Dimer Formation from Vanadium Nitride Target by Ar+ Ion Bombardment


Article Preview

A compact angle-resolved secondary ion mass spectrometer (AR-SIMS) with a special geometrical configuration, composing of a differentially pumped micro-beam ion-gun, a tiltable sample stage and a time-of-flight (TOF) mass spectrometer was applied to measure angular distribution (AD) of secondary ions ejected from VN by oblique 3 keV Ar+ sputtering at room temperature. AD of V+ was almost identical with that of N+, strongly suggesting that Gibbsian segregation did not take place during sputtering. Since the angular dependence of VN+/V+ and V2 +/V+ intensity ratios was independent of that of N+ and V+ intensities, VN+ and V2 + dimer ions were generated via the “as such” direct emission process.



Advanced Materials Research (Volumes 11-12)

Main Theme:

Edited by:

Masayuki Nogami, Riguang Jin, Toshihiro Kasuga and Wantai Yang




S. Kawaguchi et al., "Angle Dependent Sputtering and Dimer Formation from Vanadium Nitride Target by Ar+ Ion Bombardment", Advanced Materials Research, Vols. 11-12, pp. 607-610, 2006

Online since:

February 2006




[1] W.O. Hofer, in: Sputtering by Particle Bombardment III, edited by R. Behrisch and K. Wittmaack (Springer, Berlin, 1991) Ch. 2.

[2] P. Sigmund, A. Oliva and G. Falcone: Nucl. Instr. Meth. Vol. 194 (1982), p.541.

[3] J.P. Biersack and W. Eckstein: Apl. Phys. Vol. A34 (1984), p.73.

[4] W. Huang: Surf. Interface Anal. Vol. 14 (1989), p.469.

[5] T. Nagatomi, K-Y. Min and R. Shimizu: Jpn. J. Appl. Phys. Vol. 33 (1994), p.6675.

[6] H.J. Kang and R. Shimizu: Surf. Sci. Vol. 169 (1986), p.337.

[7] H.H. Andersen, B. Stenum, T. Sorensen and H.J. Whitlow: Nucl. Instr. Methods Vol. 209/210 (1987), p.487.

[8] T. Aoyama, M. Tanemura and F. Okuyama: Appl. Surf. Sci. Vol. 100/101 (1996), p.351.

[9] M. Tanemura, T. Aoyama, A. Otani, M. Ukita, F. Okuyama and T.K. Chini: Suf. Sci. Vol. 376 (1997), p.163.

[10] M. Tanemura, M. Ukita and F. Okuyama: Suf. Sci. Vol. 426 (1999), p.141.

[11] S. Kawaguchi, M. Tanemura, M. Kudo, N. Handa, N. Kinoshita, L. Miao, S. Tanemura, Y. Gotoh, M. Liao and S. Shinkai: Vacuum, in press.

DOI: 10.1016/j.vacuum.2005.11.016

[12] M.Y. Liao, Y. Gotoh, H. Tsuji and J. Ishikawa: J. Vac. Sci. Technol. Vol. A22 (2004), p.146.

[13] R. Kelly: Surf. Interface Anal. Vol. 7 (1985), p.1.

[14] R. Shimizu: Nucl. Instr. Methods Vol. B18 (1987), p.486.

[15] H. Gnaser and W.O. Hofer: Appl. Phys. Vol. A48 (1989), p.261.

[16] H. Oechsner and W. Gerhard: Surf. Sci. Vol. 44 (1974), p.480.

[17] W. Gerhard and H. Oechsner: Z. Phys. Vol. B22 (1975), p.41.

[18] G.P. Konnen, A. Tip and A.E. de Vries: Radiat. Eff. Vol. 21 (1974), 269; Vol. 26 (1975), p.23.

[19] H. Gnaser and H. Oechsner: Suf. Sci. Vol. 251/252 (1991), p.696.

Fetching data from Crossref.
This may take some time to load.