[1]
P. J. Kramer, Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience. 31 (1981) 29-33.
DOI: https://doi.org/10.2307/1308175
[2]
R. C. Duncan, World energy production, population growth, and the road to the Olduvai Gorge. Popul. Environ. 22 (2000) 503-522.
[3]
M. Olaizola, T. Bridges, S. Flores, L. Griswold, J. Morency and T. Nakamura, Microalgal removal of CO2 from flue gases: CO2 capture from a coal combustor Third Annual Conference on Carbon Capture and Sequestration Alexandria, VA (2004).
[4]
A. Yokozeki, M. B. Shiflett, C. P. Junk, L. M. Grieco and T. Foo, Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids. J. Phys. Chem. B. 112 (2008)16654-16663.
DOI: https://doi.org/10.1021/jp805784u
[5]
C. Zhao, X. Chen and C. Zhao, Multiple-cycles behavior of K2CO3/Al2O3 for CO2 capture in a fluidized-bed reactor. Energy Fuels. 24 (2010) 1009-1012.
DOI: https://doi.org/10.1021/ef901018f
[6]
S.W. Park, D. H. Sung, B. S. Choi, J. W. Lee and H. Kumazawa, Carbonation kinetics of potassium carbonate by carbon dioxide. J. Ind. Eng. Chem. 12 (2006) 522-530.
[7]
P. Behr, A. Maun, K. Deutgen, A. Tunnat, G. Oeljeklaus and K. Görner, Kinetic study on promoted potassium carbonate solutions for CO2 capture from flue gas. Energy Procedia. 4 (2011) 85-92.
DOI: https://doi.org/10.1016/j.egypro.2011.01.027
[8]
Y. Liang, D. Harrison, R. Gupta, D. Green and W. McMichael, Carbon dioxide capture using dry sodium-based sorbents. Energy Fuels. 18 (2004) 569-575.
DOI: https://doi.org/10.1021/ef030158f
[9]
J. E. White, W. J. Catallo and B. L. Legendre, Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis. 91 (2011) 1-33.
DOI: https://doi.org/10.1002/chin.201131265
[10]
H. E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29 (1957) 1702-1706.
[11]
T. Akahira, T. Sunose, Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba. Inst. Technol. 16 (1971) 22-31.
[12]
C. P. Lin, Y. M. Chang, J .P. Gupta and C. M. Shu, Comparisons of TGA and DSC approaches to evaluate nitrocellulose thermal degradation energy and stabilizer efficiencies. Process. Saf. Environ. 88 (2010) 413-419.
DOI: https://doi.org/10.1016/j.psep.2010.07.004
[13]
J. H. Flynn, L. A. Wall, General treatment of the thermogravimetry of polymers. J. Res. Natl. Bur. Stand. 70 (1966) 487-523.
[14]
T. Ozawa, A new method of analyzing thermogravimetric data. Chem. Soc. Jpn. 38 (1965)1881-1886.
[15]
C. Doyle, Doyle CD. Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 5 (1961) 285-292.
DOI: https://doi.org/10.1002/app.1961.070051506
[16]
C. Doyle, Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 6 (1962) 639-642.
DOI: https://doi.org/10.1002/app.1962.070062406
[17]
H. Yang, R. Yan, T. Chin, D. T. Liang, H. Chen and C. Zheng, Thermogravimetric analysis-Fourier transform infrared analysis of palm oil waste pyrolysis. Energy Fuels. 18 (2004) 1814-1821.
DOI: https://doi.org/10.1021/ef030193m
[18]
W. Hu, J. Smith, T. Dogu and G. Dogu, Kinetics of sodium bicarbonate decomposition. AIChE J. 32 (1986) 1483-1490.
[19]
P. K. Heda, D. Dollimore, K. S. Alexander, D. Chen, E. Law and P. Bicknell, A method of assessing solid state reactivity illustrated by thermal decomposition experiments on sodium bicarbonate. Thermochim. Acta. 255 (1995) 255-272.
DOI: https://doi.org/10.1016/0040-6031(94)02154-g