Thermogravimetric Analysis and Chemical Kinetic for Regeneration of Sodium Carbonate Solid Sorbent

Abstract:

Article Preview

In this study, non-isothermal kinetic methods for the decomposition of the adsorbed CO2 on pure sodium hydrogen carbonate (NaHCO3) were investigated by a thermogravimetric analysis (TG) and differential thermogravimetry (DTG). Four different heating rates were measured to calculate the order of reaction (n), the pre-exponential factor (A) and activation energy (Ea) using three different models: Kissinger-Akahira-Sunose Method (KAS), Flynn-Wall-Ozawa (FWO) and analytical method. The results showed that KAS and FWO methods gave similar values due to the approximation of employed equation whereas the analytical method gave different values. The obtained parameters from those three methods then were used to calculate the chemical reaction conversion versus temperature and their R2. The results showed that analytical method provided the most accurate results comparing with KAS and FWO methods.

Info:

Periodical:

Edited by:

Prof. Osman Adiguzel

Pages:

40-45

Citation:

P. Chaiwang et al., "Thermogravimetric Analysis and Chemical Kinetic for Regeneration of Sodium Carbonate Solid Sorbent", Advanced Materials Research, Vol. 1101, pp. 40-45, 2015

Online since:

April 2015

Export:

Price:

$41.00

[1] P. J. Kramer, Carbon dioxide concentration, photosynthesis, and dry matter production. BioScience. 31 (1981) 29-33.

DOI: https://doi.org/10.2307/1308175

[2] R. C. Duncan, World energy production, population growth, and the road to the Olduvai Gorge. Popul. Environ. 22 (2000) 503-522.

[3] M. Olaizola, T. Bridges, S. Flores, L. Griswold, J. Morency and T. Nakamura, Microalgal removal of CO2 from flue gases: CO2 capture from a coal combustor Third Annual Conference on Carbon Capture and Sequestration Alexandria, VA (2004).

[4] A. Yokozeki, M. B. Shiflett, C. P. Junk, L. M. Grieco and T. Foo, Physical and chemical absorptions of carbon dioxide in room-temperature ionic liquids. J. Phys. Chem. B. 112 (2008)16654-16663.

DOI: https://doi.org/10.1021/jp805784u

[5] C. Zhao, X. Chen and C. Zhao, Multiple-cycles behavior of K2CO3/Al2O3 for CO2 capture in a fluidized-bed reactor. Energy Fuels. 24 (2010) 1009-1012.

DOI: https://doi.org/10.1021/ef901018f

[6] S.W. Park, D. H. Sung, B. S. Choi, J. W. Lee and H. Kumazawa, Carbonation kinetics of potassium carbonate by carbon dioxide. J. Ind. Eng. Chem. 12 (2006) 522-530.

[7] P. Behr, A. Maun, K. Deutgen, A. Tunnat, G. Oeljeklaus and K. Görner, Kinetic study on promoted potassium carbonate solutions for CO2 capture from flue gas. Energy Procedia. 4 (2011) 85-92.

DOI: https://doi.org/10.1016/j.egypro.2011.01.027

[8] Y. Liang, D. Harrison, R. Gupta, D. Green and W. McMichael, Carbon dioxide capture using dry sodium-based sorbents. Energy Fuels. 18 (2004) 569-575.

DOI: https://doi.org/10.1021/ef030158f

[9] J. E. White, W. J. Catallo and B. L. Legendre, Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J. Anal. Appl. Pyrolysis. 91 (2011) 1-33.

DOI: https://doi.org/10.1002/chin.201131265

[10] H. E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29 (1957) 1702-1706.

[11] T. Akahira, T. Sunose, Method of determining activation deterioration constant of electrical insulating materials.  Res. Rep. Chiba. Inst. Technol. 16 (1971) 22-31.

[12] C. P. Lin, Y. M. Chang, J .P. Gupta and C. M. Shu, Comparisons of TGA and DSC approaches to evaluate nitrocellulose thermal degradation energy and stabilizer efficiencies. Process. Saf. Environ. 88 (2010) 413-419.

DOI: https://doi.org/10.1016/j.psep.2010.07.004

[13] J. H. Flynn, L. A. Wall, General treatment of the thermogravimetry of polymers. J. Res. Natl. Bur. Stand. 70 (1966) 487-523.

[14] T. Ozawa, A new method of analyzing thermogravimetric data. Chem. Soc. Jpn. 38 (1965)1881-1886.

[15] C. Doyle, Doyle CD. Kinetic analysis of thermogravimetric data. J. Appl. Polym. Sci. 5 (1961) 285-292.

DOI: https://doi.org/10.1002/app.1961.070051506

[16] C. Doyle, Estimating isothermal life from thermogravimetric data. J. Appl. Polym. Sci. 6 (1962) 639-642.

DOI: https://doi.org/10.1002/app.1962.070062406

[17] H. Yang, R. Yan, T. Chin, D. T. Liang, H. Chen and C. Zheng, Thermogravimetric analysis-Fourier transform infrared analysis of palm oil waste pyrolysis. Energy Fuels. 18 (2004) 1814-1821.

DOI: https://doi.org/10.1021/ef030193m

[18] W. Hu, J. Smith, T. Dogu and G. Dogu, Kinetics of sodium bicarbonate decomposition. AIChE J. 32 (1986) 1483-1490.

[19] P. K. Heda, D. Dollimore, K. S. Alexander, D. Chen, E. Law and P. Bicknell, A method of assessing solid state reactivity illustrated by thermal decomposition experiments on sodium bicarbonate. Thermochim. Acta. 255 (1995) 255-272.

DOI: https://doi.org/10.1016/0040-6031(94)02154-g