Structural and Electronic Properties of Hydrogen-Passivated Silicon Quantum Dots: Density Functional Calculations

Abstract:

Article Preview

Density functional theory (DFT) by numerical basis-set calculations of silicon quantum dots (Si-QDs) passivated by hydrogen, ranging in size up to 1.9 nm are presented. These DFT computation results are used to examine and deduce the properties of 14 spherical Si-QDs including its density of state (DOS), and energy gap from the HOMO-LUMO results. The atomistic model of each silicon QDs was constructed by repeating crystal unit cell of face-centered cubic (FCC) structure, then the QDs surface was passivated by hydrogen atoms. The model was relaxed and optimized using Quasi-Newton method for each size of Si-QDs to get an ideal structure. Exchange-correlation potential (Vxc) of electrons were approximated in this system using the Local Density Approximation (LDA) functional and Perdew-Zunger (PZ) functional. Finally, all results were compared with previous experimental data and other similar theoretical approaches, and these results augured well

Info:

Periodical:

Edited by:

Jedol Dayou, Azhan Hashim, Walter Charles Primus, Fuei Pien Chee, Mohamad Deraman and Roslan Abd-Shukor

Pages:

571-576

Citation:

M. M.-'ab Anas et al., "Structural and Electronic Properties of Hydrogen-Passivated Silicon Quantum Dots: Density Functional Calculations", Advanced Materials Research, Vol. 1107, pp. 571-576, 2015

Online since:

June 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] C. S. Garoufalis, A. D. Zdetsis, and S. Grimme, High Level Ab Initio Calculations of the Optical Gap of Small Silicon Quantum Dots, Phys. Rev. Lett. 87 (2001) 276402.

DOI: https://doi.org/10.1103/physrevlett.87.276402

[2] Information on http: /www. openmx-square. org.

[3] S. Goedecker, Linear scaling electronic structure methods, Rev. Mod. Phys. 71 (1999) 1085-1123.

DOI: https://doi.org/10.1103/revmodphys.71.1085

[4] S. Huzinaga, Basis sets for molecular calculations, Comput. Phys. Rep. 2 (1985) 281-339.

[5] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, M. Scheffler, Ab initio molecular simulations with numeric atom-centered orbitals, Comput. Phys. Commun. 180 (2009) 2175–2196.

DOI: https://doi.org/10.1016/j.cpc.2009.06.022

[6] T. Ozaki, Variationally optimized atomic orbitals for large-scale electronic structures, Phys. Rev. B 67 (2003) 155108.

DOI: https://doi.org/10.1103/physrevb.67.155108

[7] J.S. Nelson, E.B. Stechel, A.F. Wright, S.J. Plimpton, P.A. Schultz, M.P. Sears, Basis-set convergence of highly defected sites in amorphous carbon, Phys. Rev. B 52 (1995) 9354-9359.

DOI: https://doi.org/10.1103/physrevb.52.9354

[8] C. G. Broyden, The convergence of a class of double rank minimization algorithms, J. Inst. Math. Appl. 6 (1970) 76.

[9] R. Fletcher, A new approach to variable metric algorithms, Comput. J. 13 (1970) 317.

[10] D. Goldrarb, A family of variable metric methods derived by variational means, Math. Comp. 24 (1970) 23.

[11] D. F. Shanno, Conditioning of quasi-Newton methods for functional minimization, Math. Comp. 24 (1970) 647.

DOI: https://doi.org/10.1090/s0025-5718-1970-0274029-x

[12] J. P. Perdew and A. Zunger , Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 ( 1981) 5048-5079.

DOI: https://doi.org/10.1103/physrevb.23.5048

[13] Information on http: /jp-minerals. org/vesta/en.

[14] R. W. Godby, M. Schlüter, and L. J. Sham, Accurate exchange-correlation potential for silicon and its discontinuity on addition of an electron, Phys. Rev. Lett. 56 (1986) 2415-2418.

DOI: https://doi.org/10.1103/physrevlett.56.2415

[15] Bart J. Van Zeghbroeck, Principles of Electronic Devices, 1996, digital ebook available at http: /www. eletrica. ufpr. br/graduacao/e-books/Principles%20Of%20Semiconductor%20Devices. pdf.

[16] A. J. Williamson et al., Quantum Monte Carlo Calculations of Nanostructure Optical Gaps: Application to Silicon Quantum Dots, Phys. Rev. Lett. 89 (2002) 196803.

DOI: https://doi.org/10.1103/physrevlett.89.196803

[17] F. Fehér, Forschungsbericht des Landes NRW (Westdeutscher Verlag, Köln, 1977).

[18] J. P. Wilcoxon, G. A. Samara, and P. N. Provencio, Optical and electronic properties of Si nanoclusters synthesized in inverse micelles, Phys. Rev. B 60 (1999) 2704-2714.

DOI: https://doi.org/10.1103/physrevb.60.2704

[19] M.V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue., Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen, Phys. Rev. Lett. 82 (1999) 197-200.

DOI: https://doi.org/10.1103/physrevlett.82.197

[20] Wang L W & Zunger A, Electronic Structure Pseudopotential Calculations of Large (. apprx. 1000 Atoms) Si Quantum Dots, J. Phys. Chem. 98 (1994) 2158-2165.

DOI: https://doi.org/10.1021/j100059a032

Fetching data from Crossref.
This may take some time to load.