External and Internal Influences in Silicene Monolayer


Article Preview

Under external electric field, a free standing silicene monolayer is investigated for the physical and electronic features using the density functional theory with norm-conserving pseudopotentials and pseudo-atomic localized basis functions. It is found that silicene tends to be flat instead of buckled as applying electric field perpendicular to the surface. We observed on some range magnitude of electric field and noticed that there is a monotonic decreasing in number of DOS near the Fermi level showing the possibility of tunable bandgap on silicene. We also found that in this higher magnitude electric field, the Dirac cone is no longer occurring at K-point while the band gap term remains direct. The asymmetry onsite potential between the Si atom at site A and B spoils the degeneracy at the K point by the presence of external or internal influence. In this work, we try to combine those influences by considering Stone Wales (SW) defect and outer z-direction of electric field as internal and external factors respectively. A non-linear correlation of the result is profoundly becoming more effective way in effort to bring remarkable band-gap in silicene monolayer.



Edited by:

Ferry Iskandar, Satria Zulkarnaen Bisri, Prof. Mikrajuddin Abdullah, Prof. Khairurrijal and Prof. Kikuo Okuyama




M. Syaputra et al., "External and Internal Influences in Silicene Monolayer", Advanced Materials Research, Vol. 1112, pp. 133-138, 2015

Online since:

July 2015




[1] A. K. Geim, K. S. Novoselov, The rise of graphene, Nature Materials. 6 (2007) 183–191.

[2] S. Trivedy, A. Srivastava, and R. Kurchania, Silicene and germanene: a first principle study of electronic structure and effect of hydrogenation-passivation, J Comput Theor Nanosci. 11 (2014) 1-8.

[3] B. Aufray, A. Kara, S.B. Vizzini, H. Oughaddou, C. LéAndri, B. Ealet, G. Le Lay, Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene, Appl Phys Lett. 18 (2010) 183102.

DOI: https://doi.org/10.1063/1.3419932

[4] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium, Phys. Rev. Lett. 102 (2009) 23.

DOI: https://doi.org/10.1103/physrevlett.102.236804

[5] B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Epitaxial growth of a silicene sheet, Applied Physics Letters. 97 (2010) 223109.

DOI: https://doi.org/10.1063/1.3524215

[6] L. Meng, Y. Wang, L. Zhang, S. Du, R. Wu, L. Li, Y. Zhang, G. Li, H. Zhou, W. A. Hofer, and H. -J. Gao, Buckled silicene formation on Ir(111) , Nano Lett., 13 (2013) 685.

DOI: https://doi.org/10.1021/nl304347w

[7] A. Fleurence, R. Friedlein, T. Ozaki, H. Kawai, Y. Wang, and Y. Yamada-Tamura, Experimental evidence for epitaxial silicene on diboride thin films, Phys. Rev. Lett. 108 (2012) 245501.

DOI: https://doi.org/10.1103/physrevlett.108.245501

[8] Electrical properties of silicon, Ioffe Institute Database.

[9] Z. Ni , Q. Liu , K. Tang , J. Zheng , J. Zhou , R. Qin , Z. Gao, D. Yu  and J. Lu, Tunable Bandgap in Silicene and Germanene, Nano Letters. 12 (2012) 113-118.

DOI: https://doi.org/10.1021/nl203065e

[10] Zhi-Gang Shao; Xue-Sheng Ye; Lei Yang; Cang-Long Wang, First-principles calculation of intrinsic carrier mobility of silicene, J. Appl. Phys. 114 (2013) 093712.

DOI: https://doi.org/10.1063/1.4820526

[11] Tim H. Osborn, Amir A. Farajian, Olga V. Pupysheva, Rachel S. Aga, L.C. Lew Yan Voon, Ab initio simulations of silicene hydrogenation, Chem. Phys. Lett. 511 (2011) 101–105.

DOI: https://doi.org/10.1016/j.cplett.2011.06.009

[12] M. Houssa, E. Scalise, K. Sankaran, G. Pourtois, V. V. Afanas'ev, A. Stesmans, Electronic properties of hydrogenated silicene and germanene, App. Phys. Lett. 98 (2011) 223107.

DOI: https://doi.org/10.1063/1.3595682

[13] Ruge Quhe, Ruixiang Fei, Qihang Liu, Jiaxin Zheng, Hong Li, Chengyong Xu, Zeyuan Ni, Yangyang Wang, Dapeng Yu, Zhengxiang Gao, Jing Lu, Tunable and sizable band gap in silicene by surface adsorption, Scientific Report. 2 (2012) 853.

DOI: https://doi.org/10.1038/srep00853

[14] G. B. Bachelet, D. R. Hamann, M. Schlüter, Pseudopotentials that work: From H to Pu, Scientific Report. 26 (1982) 4199.

DOI: https://doi.org/10.1103/physrevb.26.4199

[15] N. Troullier, José Luriaas Martins, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B. 43 (1993) 1103.

DOI: https://doi.org/10.1103/physrevb.43.1993

[16] D.R. Hamann, M. Schlüter and C. Chiang, Norm-Conserving Pseudopotentials, Phys. Rev. Lett. 43 (1979) 1494.

DOI: https://doi.org/10.1103/physrevlett.43.1494

[17] L. Kleinman and D.M. Bylander, Efficacious Form for Model Pseudopotentials, Phys. Rev. Lett. 48 (1982) Phys. Rev. Lett.

DOI: https://doi.org/10.1103/physrevlett.48.1425

[18] T. Ozaki, Variationally optimized atomic orbitals for large-scale electronic structures, Phys. Rev. B. 67 (2003) 155108.

DOI: https://doi.org/10.1103/physrevb.67.155108

[19] S. N. Sharmilar and U.V. Waghmare, Electronic and vibrational signatures of Stone-Wales defects in graphene: First-principles analysis, Phys. Rev. B 86 (2012) 165401.

DOI: https://doi.org/10.1103/physrevb.86.165401

[20] H. Sahin, J. Sivek, S. Li, B. Partoens, and F. M. Peeters, Stone-Wales defects in silicene: Formation, stability, and reactivity of defect sites, Phys. Rev. B. 88 (2013) 045434.

DOI: https://doi.org/10.1103/physrevb.88.045434

[21] A. Manjanath, A. K. Singh, Low formation energy and kinetic barrier of Stone–Wales defect in infinite and finite silicene, Chem. Phys. Lett. 592 (2014) 52–55.

DOI: https://doi.org/10.1016/j.cplett.2013.12.010