Radiodensity Study of Hydroxyapatite Coated Porous Tantalum Implant Material of Rat Animal Model

Abstract:

Article Preview

The aim of this study was to find out the in-vivo radiography density changes of hydroxyapatite coated porous tantalum biomaterial implant after surgical implantation in rats. Ten adult male Sprague Dawley rats were divided into two groups: hydroxyapatite-coated porous tantalum (pTa-HAp) and uncoated porous tantalum (pTa). The implants with dimension of 5 x 2 x 0.5 mm3 was inserted into flatten bone defects drilled at the femur bone on latero-medial region. The implant density from right lateral view radiogram was analyzed at day 0, 7, 14 and 30 post-implantation. The results showed that the radiodensity of both pTa and pTa-HAp groups decreased in time of implantation. The radiodensity changes of pTa-HAp showed higher decrease compared to pTa.

Info:

Periodical:

Edited by:

Ferry Iskandar, Satria Zulkarnaen Bisri, Prof. Mikrajuddin Abdullah, Prof. Khairurrijal and Prof. Kikuo Okuyama

Pages:

470-473

Citation:

B. Panjaitan et al., "Radiodensity Study of Hydroxyapatite Coated Porous Tantalum Implant Material of Rat Animal Model", Advanced Materials Research, Vol. 1112, pp. 470-473, 2015

Online since:

July 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] M. Fathi and V. Mortazavi, Tantalum, Niobium and Titanium Coatings for Biocompatibility Improvement of Dental Implants, J Dent Res. 4 (2008) 74-82.

[2] C. Fleck and D. Eifler, Corrosion, fatigue and corrosion fatigue behaviour of metal implant materials, especially titanium alloys, Int J Fatigue. 32 (2010) 929-935.

DOI: https://doi.org/10.1016/j.ijfatigue.2009.09.009

[3] B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, J.J. Jacobs, Experimental and clinical performance of porous tantalum in orthopedic surgery, Biomaterials. 27 (2006) 4671-4681.

DOI: https://doi.org/10.1016/j.biomaterials.2006.04.041

[4] R. Cohen, A porous tantalum trabecular metal: basic science, Am J Orthop. 31 (2002) 216-217.

[5] T.A. Schildhauer, B. Robie, G. Muhr, M. Koller, Bacterial adherence to tantalum versus commonly used orthopedic metallic implant materials, J Orthop Trauma. 20 (2006) 476-484.

DOI: https://doi.org/10.1097/00005131-200608000-00005

[6] A. Maho, S. Linden, C. Arnould, S. Detriche, J. Delhalle, Z. Mekhalif, Tantalum oxide/carbon nanotubes composite coatings on titanium, and their functionalization with organophosphonic molecular films: a high quality scaffold for hydroxyapatite growth, J Colloid Interface Sci. 371 (2012).

DOI: https://doi.org/10.1016/j.jcis.2011.12.066

[7] V. Karageorgiou, D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials 26 (2005) 5474-5491.

DOI: https://doi.org/10.1016/j.biomaterials.2005.02.002

[8] P. Habibovic, F. Barrere, C.A.V. Blitterswijk, K.D. Groot, P. Layrolle, Biomimetic Hydroxyapatite Coating on Metal Implants, J Am Ceram Soc. 85 (2002) 517-522.

DOI: https://doi.org/10.1111/j.1151-2916.2002.tb00126.x

[9] N. Safuan, I. Sukmana, M.R.A. Kadir, D. Noviana, The Evaluation of Hydroxyapatite (HA) Coated and Uncoated Porous Tantalum for Biomedical Material Applications, J. Phys.: Conf. Ser. 495 (2014) 012-023.

DOI: https://doi.org/10.1088/1742-6596/495/1/012023

[10] S.V. Dorozhkin, Calcium Orthophosphates as Bioceramics: State of the Art, J Funct Biomater. 1 (2010) 22-107.

[11] J.M. Anderson, A. Rodriguez, D.T. Chang, Foreign body reaction to biomaterials, Semin Immunol. 20 (2008) 86-100.

[12] T. Albrektsson, C. Johansson, Osteoinduction, osteoconduction and osseointegration, Eur Spine J. 10 (2001) 96-101.

DOI: https://doi.org/10.1007/s005860100282

[13] J.S. Hermann, D.L. Cochran, P.V. Nummikoski, D. Buser, Crestal bone changes around titanium implants. A radiographic evaluation of unloaded nonsubmerged and submerged implants in the canine mandible, " J Periodontol 68 (1997) 117-130.

DOI: https://doi.org/10.1902/jop.1997.68.11.1117

[14] Y. Cheng, W. Cai, H.T. Li, Y.F. Zheng, Surface modification of NiTi alloy with tantalum to improve its biocompatibility and radiopacity, J. Mater. Sci. 41 (2006) 4961-4964, (2006).

DOI: https://doi.org/10.1007/s10853-006-0096-6

[15] D.C. Chan, H.W. Titus, K.H. Chung, H. Dixon, S.T. Wellinghoff, H.R. Rawls, Radiopacity of tantalum oxide nanoparticle filled resins, Dent Mater. 15 (1999) 219-222.

DOI: https://doi.org/10.1016/s0109-5641(99)00039-1

[16] K. Soballe, Hydroxyapatite ceramic coating for bone implant fixation. Mechanical and histological studies in dogs, Acta Orthop Scand Suppl. 255 (1993) 1-58.

DOI: https://doi.org/10.3109/17453679309155636

[17] J. Dumbleton, M.T. Manley, Hydroxyapatite-coated prostheses in total hip and knee arthroplasty, J Bone Joint Surg Am. (2004) 2526-2540.

DOI: https://doi.org/10.2106/00004623-200411000-00028

[18] J.R. Woodard, A.J. Hilldore, S.K. Lan, C.J. Park, A.W. Morgan, J.A.C. Eurell, S.G. Clark, M.B. Wheeler, R.D. Jamison, A.J. Wagoner Johnson, The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity, Biomaterials 28 (2007).

DOI: https://doi.org/10.1016/j.biomaterials.2006.08.021

Fetching data from Crossref.
This may take some time to load.