Template Based Synthesis of Ni Nanowires by Electrochemical Deposition

Abstract:

Article Preview

During the last decade an increasing number of researchers focused on materials that have at least one dimension in the nanoscale range. That one dimension has immense impact on the physical and chemical properties of the materials, which is mainly due to the large surface to volume ratio. In order to modify the ratio of surface to volume, many shapes can be produced. Each shape is more useful in certain application than in others (e.g. nanowires are more used in sensors then other shapes and nanospheres are more used in medicine).In this paper, nickel nanowires were grown by electrochemical deposition into polycarbonate track etched (PCTE) membrane. The morphology and size of Ni NWs were examined using an Environmental Scanning Electron Microscopy equipped with energy dispersive X-ray spectroscopy.

Info:

Periodical:

Edited by:

Mihai Branzei and Iulian Vasile Antoniac

Pages:

121-128

Citation:

G. Tepes et al., "Template Based Synthesis of Ni Nanowires by Electrochemical Deposition", Advanced Materials Research, Vol. 1114, pp. 121-128, 2015

Online since:

July 2015

Export:

Price:

$38.00

* - Corresponding Author

[1] D. Neumaier, A. Vogl, J. Eroms et al., Quantum transport in ferromagnetic permalloy nanostructures, Physical Review B, vol. 78, no. 17, p.174424, 11/24/, (2008).

DOI: https://doi.org/10.1103/physrevb.78.174424

[2] Z. Z. Sun, and J. Schliemann, Fast Domain Wall Propagation under an Optimal Field Pulse in Magnetic Nanowires, Physical Review Letters, vol. 104, no. 3, p.037206, 01/21/, (2010).

DOI: https://doi.org/10.1103/physrevlett.104.037206

[3] S. S. M. Mahshid, Sara; Dolati, Abolghasem; Ghorbani, Mohammad; Yang, Lixia; Luo, Shenglian; Cai, Qingyun, Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation, Electrochimica Acta, vol. 58, pp.551-555, (2011).

DOI: https://doi.org/10.1016/j.electacta.2011.09.083

[4] A. R. Rathmell, Nguyen, M., Chi, M. and Wiley, B. J. , Synthesis of Oxidation-Resistant Cupronickel Nanowires for Transparent Conducting Nanowire Networks, NanoLetters, no. May 29, (2012).

DOI: https://doi.org/10.1021/nl301168r

[5] R. Vidu, and S. Hara, Surface alloying at the Cd  ∣  Au(100) interface in the upd region. Electrochemical studies and in situ EC-AFM observation, Journal of Electroanalytical Chemistry, vol. 475, no. 2, pp.171-180, 10/14/, (1999).

DOI: https://doi.org/10.1016/s0022-0728(99)00354-x

[6] S. H. Ruxandra Vidu, In situ electrochemical atomic force microscopy study on Au„100…/Cd interface in sulfuric acid solution, American Vacuum Society.

DOI: https://doi.org/10.1116/1.591105

[7] A. T. o. Rena´Ta Orinˇa´ Kova´, Daniela Kladekova´, Miriam Ga´Lova´ And Roger M. Smith, Recent developments in the electrodeposition of nickel and some nickel-based alloys, Journal of Applied Electrochemistry, vol. 36, pp.957-972, (2006).

DOI: https://doi.org/10.1007/s10800-006-9162-7

[8] F. Xiao, C. Hangarter, B. Yoo et al., Recent progress in electrodeposition of thermoelectric thin films and nanostructures, Electrochimica Acta, vol. 53, no. 28, pp.8103-8117, (2008).

DOI: https://doi.org/10.1016/j.electacta.2008.06.015

[9] H. Schlörb, V. Haehnel, M. S. Khatri et al., Magnetic nanowires by electrodeposition within templates, physica status solidi (b), vol. 247, no. 10, pp.2364-2379, (2010).

DOI: https://doi.org/10.1002/pssb.201046189

[10] B. Jaleh, and A. Omidvar Dezfuli, Pulse electrodeposition of Ni2Sb nanowires in polycarbonate template, Solid State Communications, vol. 166, pp.56-59, (2013).

DOI: https://doi.org/10.1016/j.ssc.2013.05.009

[11] M. C. Clochard, M. El Jouad, N. Bizière et al., Magnetic nanoconstrictions made from nickel electrodeposition in polymeric bi-conical tracks: Magneto-transport behavior, Radiation Physics and Chemistry, vol. 94, pp.66-71, (2014).

DOI: https://doi.org/10.1016/j.radphyschem.2013.06.016

[12] J. D. Martin, Using XPowder: A software package for Powder X-ray diffraction analysis. www. xpowder. com D.I. GR. 1001/04. ISBN 84-609-1497-6. 1-5p. Spain, (2004).

[13] H. T. Nobumitsu Hirai, Shigeta Hara, Enhanced diffusion of surface atoms at metalrelectrolyte interface under potential control, Applied Surface Science, p.506–511, (1998).

DOI: https://doi.org/10.1016/s0169-4332(98)00061-0

[14] N. H. K. Kubo*, S. Hara, Decay of nano-islands on Au(1 0 0) electrode in sulfuric acid solution with Cl anions, Applied Surface Science, vol. 237, p.301–305, (2004).

DOI: https://doi.org/10.1016/j.apsusc.2004.06.081

[15] K. -i. W. Nobumitsu Hirai, Akiko Shiraki, and Shigeta Hara, In situ atomic force microscopy observation on the decay of small islands on Au single crystal in acid solution, Journal of Vacuum Science & Technology B, vol. 18, no. 7, (2000).

DOI: https://doi.org/10.1116/1.591140

[16] H. O. a. S. H. Nobumitsu HIRAI, In Situ Electrochemical Atomic Force Microscopy with Atomic Resolution of Fe(110) in Sodium Sulfate Aqueous Solution, ISIJ International, vol. 40, no. 7, pp.702-705, (2000).

DOI: https://doi.org/10.2355/isijinternational.40.702

[17] M. Y. Nobumitsu Hirai, Toshihiro Tanaka, Shigeta Hara, Decay of nano-islands on the surface of a Au(111) electrode in contact with sulfuric acid solution, Science and Technology of Advanced Materials 5, p.115–118, (2003).

DOI: https://doi.org/10.1016/j.stam.2003.10.021

[18] S. B. a. M. Gies, Determination of activation energies of mass transport processes on Ag(111) electrodes in aqueous electrolyte, Phys. Chem. Chem. Phys, vol. 2, pp.3675-3680, (2000).

DOI: https://doi.org/10.1039/b003810p

[19] C. J. Fei Cai, Xueyan Wu, X-ray diffraction characterization of electrodeposited Ni-Al composite coatings prepared at different current densities , Journal of Alloys and Compounds, vol. 604, p.292 – 297, 15 August (2014).

DOI: https://doi.org/10.1016/j.jallcom.2014.03.063

[20] P. Scherrer, Bestimmung der Grösse und der Inneren Struktur von Kolloidteilchen Mittels Röntgenstrahlen, Nachrichten von der Gesellschaft der Wissenschaften, Göttingen, Mathematisch-Physikalische Klasse, vol. 2, pp.98-100, (1918).

DOI: https://doi.org/10.1007/978-3-662-33915-2_7

[21] A. Ghaddar, F. Gloaguen, J. Gieraltowski et al., Magnetic crossover effect in Nickel nanowire arrays, Physica B: Condensed Matter, vol. 406, no. 10, pp.2046-2053, (2011).

DOI: https://doi.org/10.1016/j.physb.2011.03.021