A Review of the Importance and Present Status of Micro-Tubular Solid Oxide Fuel Cells


Article Preview

The generation of environmental-friendly energy is now one of the major demand of the world for healthy future. Fuel cell is one of the prime candidate in this regard which convert chemical energy of a fuel gas very efficiently and directly into electrical energy. This chapter describes the concept, impact of anode and electrolyte morphology, thickness, diameter, and fabrication of a micro-tubular solid oxide fuel cell (SOFC). The chapter describes the anode, cathode, and electrolyte of the cell components in more detail and their importance of each is regarding their size and thickness. Advantages of micro-tubular SOFCs with respect to the other fuel cell technologies are compared. The chapter describes the potential for directly running off hydrocarbon fuels and the design and operation of micro-tubular SOFCs on bio-fuel specifications and materials’ requirements. The chapter also discuss fabrication technology of micro-tubular single cell by using commercially available raw materials.



Edited by:

Amir Al-Ahmed, Mohammad Kamal Hossain, Mohammad Afzaal and Haitham M. Bahaidarah




M. H. Zahir, "A Review of the Importance and Present Status of Micro-Tubular Solid Oxide Fuel Cells", Advanced Materials Research, Vol. 1116, pp. 190-201, 2015

Online since:

July 2015





* - Corresponding Author

[1] A.B. Stambouli, E. Traversa, Solid oxide fuel cells (SOFCs): A review of an environmentally clean and efficient source of energy, Renewable and Sustainable Energy Reviews 6 (2002) 433-455.

DOI: https://doi.org/10.1016/s1364-0321(02)00014-x

[2] N.M. Sammes, K. Galloway, M.F. Serincan, T. Suzuki, T. Yamaguchi, M. Awano, W. Colella, Solid Oxide Fuel Cells, Wei-Yin Chen, J. Seiner, T. Suzuki, M. Lackner (Eds. ), Handbook of Climate Change Mitigation, DOI 10. 1007/978-1-4419-7991-9-44, Springer, 2012, 1703-1727.

DOI: https://doi.org/10.1007/978-1-4419-7991-9_44

[3] N.Q. Minh, T. Takahashi, Science and technology of ceramic fuel cells. Elsevier Amsterdam, (1995).

[4] N. Q. Minh, Ceramic fuel-cells, J. Am. Ceram. Soc. 78 (1993) 563-588.

[5] Y. Wang, C.Y. Wang, Simulations of Flow and Transport Phenomena in a Polymer Electrolyte Fuel Cell under Low-Humidity Operations, J. Power Sources 147 (2005) 148-161.

DOI: https://doi.org/10.1016/j.jpowsour.2005.01.047

[6] O. Yamamoto, Solid oxide fuel cells: fundamental aspects and prospects, Electrochim. Acta 45 (2000) 2423-2435.

DOI: https://doi.org/10.1016/s0013-4686(00)00330-3

[7] T. Suzuki, T. Yamaguchi, Y. Fujishiro, M. Awano, Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature, J. Power Sources 160 (2006) 73-77.

DOI: https://doi.org/10.1016/j.jpowsour.2006.01.037

[8] T. Suzuki, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Design and fabrication of lightweight, submillimeter tubular solid oxide fuel cells, Electrochem. Solid-State Lett. 10 (2007) A177-A179.

DOI: https://doi.org/10.1149/1.2739211

[9] T. Suzuki, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Performance of the micro-SOFC module using submillimeter tubular cells, J. Electrochem. Soc. 156 (2009) B318-B321.

DOI: https://doi.org/10.1149/1.3046159

[10] S.C. Singhal, Solid oxide fuel cells for stationary, mobile, and military applications, Solid State Ionics 405 (2002) 152-153.

DOI: https://doi.org/10.1016/s0167-2738(02)00349-1

[11] H. Yokokawa, N. Sakai, T. Horita, K. Yamaji, M.E. Brito, Electrolytes for solid-oxide fuel cells, MRS Bull. 30 (2005) 591-595.

DOI: https://doi.org/10.1557/mrs2005.166

[12] S. de Souza, S.J. Visco, L.C. De Johnge, Reduced-Temperature solid oxide fuel cell based on YSZ thin-film electrolyte, J. Electrochem. Soc. 144 (1997) L35-L37.

DOI: https://doi.org/10.1149/1.1837484

[13] S.P. Jiang, S.H. Chan, A Review of anode materials development in solid oxide fuel cells, J. Mater. Sci. 39 (2004) 4405-4439.

[14] T. Suzuki, M.H. Zahir, Y. Funahashi, T. Yamagucgi, Y. Fujishiro, M. Awano, Fabrication and Characterization of Microtubular SOFCs with Multilayered Electrolyte, Electrochem. Solid-State Lett. 11(6) (2008) B87-90.

DOI: https://doi.org/10.1149/1.2895008

[15] N.M. Sammes, Y. Du, R. Bove, Design and fabrication of a 100 W anode supported micro-tubular SOFC stack, J. Power Sources 145 (2005) 428-434.

DOI: https://doi.org/10.1016/j.jpowsour.2005.01.079

[16] K. Kendall, M. Palin, A small solid oxide fuel cell demonstrator for microelectronic applications, J. Power Sources 71 (1998) 268-270.

DOI: https://doi.org/10.1016/s0378-7753(97)02761-4

[17] K. Yashiro, N. Yamada, T. Kawada, J. Hong, A. Kaimai, Y. Nigara, J. Mizusaki, Demonstration and stack concept of quick startup/shutdown SOFC (micro-SOFC), Electrochemistry 70 (2002) 958-960.

[18] V. Lawlor, S. Griesser, G. Buchinger, A.G. Olabi, S. Cordiner, D. Meissner, Review of the micro-tubular solid oxide fuel cell: Part I. Stack design issues and research activities, J. Power Sources 193 (2009) 387-399.

DOI: https://doi.org/10.1016/j.jpowsour.2009.02.085

[19] S.C. Singhal, K. Kendall, High-temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier (2004).

[20] T. Alston, K. Kendall, M. Palin, M. Prica, P. Windibank, A 1000-cell SOFC reactor for domestic cogeneration, J. Power Sources 71 (1998) 271-274.

DOI: https://doi.org/10.1016/s0378-7753(97)02756-0

[21] K. Hassmann, SOFC Power Plants, the Siemens-Westinghouse Approach, Fuel Cells 1 (2001) 78-84.

DOI: https://doi.org/10.1002/1615-6854(200105)1:1<78::aid-fuce78>3.3.co;2-h

[22] H. Weckmann, A. Syed, Z. Ilhan, J. Arnold, Development of porous anode layers for the solid oxide fuel cell by plasma spraying, J. Therm. Spray Techno. 15 (2006) 604-609.

DOI: https://doi.org/10.1361/105996306x147289

[23] T. Suzuki, M.H. Zahir, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Impact of anode microstructure on solid oxide fuel cells, Science 325 (2009) 852-855.

DOI: https://doi.org/10.1126/science.1176404

[24] T. Hibino, A. Hashimoto, K. Asano, M. Yano, M. Suzuki, M. Sano, An intermediate-temperature solid oxide fuel cell providing higher performance with hydrocarbons than with hydrogen, Electrochem. Solid-State Lett. 5 (2002) A242-A244.

DOI: https://doi.org/10.1149/1.1508551

[25] Y.W. Sin, K. Galloway, B. Roy, N.M. Sammes, J.H. Song, T. Suzuki, M. Awano, The properties and performance of micro-tubular (less than 2. 0 mm O.D. ) anode supported solid oxide fuel cell (SOFC), Inter. J. Hydro. Energy 36 (2011) 1882-1889.

DOI: https://doi.org/10.1016/j.ijhydene.2009.12.167

[26] T. Suzuki, Y. Funahashi, M. H. Zahir, T. Yamaguchi, Y. Fujishiro, M. Awano, Fabrication of Needle-type Micro SOFCs for Micro Power Devices, Electrochem. Communications 10 (2008) 1563-1566.

DOI: https://doi.org/10.1016/j.elecom.2008.08.016

[27] B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature 414 (2001) 345-352.

[28] W.Z. Zhu, S.C. Deevi, A Review on the status of anode materials for solid oxide fuel cells, Materials Science and Engineering A362 (2003) 228-239.

DOI: https://doi.org/10.1016/s0921-5093(03)00620-8

[29] J.W. Yan, H. Matsumoto, M. Enoki, T. Ishihara, High-power SOFC using La0. 9Sr0. 1Ga0. 8 Mg 0. 2O3±δ / Ce 0. 8 Sm 0. 2O2±δ composite film, Electrochem. Solid-State Lett. 8 (2005) A389-A391.

DOI: https://doi.org/10.1149/1.1943568

[30] Y.B. Go, A.J. Jacobson, Solid Solution Precursors to Gadolinia-Doped Ceria Prepared via a Low-Temperature Solution Route. Chem. Mater. 19 (2007) 4702-4709.

DOI: https://doi.org/10.1021/cm071310k

[31] B.C.H. Steele, Appraisal of Ce1-yGdyO2-y/2 electrolytes for ITSOFC operation at 500 oC, Solid State Ionics 129 (2000) 95-110.

DOI: https://doi.org/10.1016/s0167-2738(99)00319-7

[32] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, Electrical-properties of ceria-based oxides and their application to solid oxide fuel-cells, Solid State Ionics 52 (1992) 165-172.

DOI: https://doi.org/10.1016/0167-2738(92)90102-u

[33] S.W. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid oxide fuel cells, Nat. Mater. 2 (2003) 320-323.

DOI: https://doi.org/10.1038/nmat871

[34] H. Huang, M. Nakamura, P. C. Su, R. Fasching, Y. Saito, F. B. Prinz, High-performance ultrathin solid oxide fuel cells for low-temperature operation, J. Electrochem. Soc. 154 (2007) B20-B24.

DOI: https://doi.org/10.1149/1.2372592

[35] M.H. Zahir, T. Suzuki, Effects of polymer binder in electrolyte slurries and their microtubular SOFC applications, J. Fuel Cell Science and Techno. 10 (2013) 021006-0210011.

DOI: https://doi.org/10.1115/1.4023541

[36] Z. Shao, S.M. Haile, A High-Performance Cathode for the Next Generation of Solid-Oxide Fuel Cells, Nature (London), 431 (2004) 170-173.

DOI: https://doi.org/10.1038/nature02863

[37] V.T. Ekaterina, V.V. Kharton, Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief Review, II. Electrochemical behavior vs. materials science aspects, J. Solid State Electrochem. 12 (2008) 1367-1391.

DOI: https://doi.org/10.1007/s10008-008-0611-6

[38] E.D. Wachsman, Functionally gradient bilayer oxide membranes and electrolytes, Solid State Ionics. 152 (2002) 657-662.

DOI: https://doi.org/10.1016/s0167-2738(02)00405-8

[39] B.C.H. Steele, Material Science and Engineering, the enabling technology for the commercialization of fuel cell systems. J. Mater. Sci. 36 (2001) 1053-1068.

[40] T. Suzuki, M.H. Zahir, T. Yamaguchi, Y. Fujishiro, M. Awano, N. Sammes, Fabrication of micro-tubular solid oxide fuel cells with a single-grain-thick yttria stabilized zirconia electrolyte, J. Power Sources 195 (2010) 7825-7828.

DOI: https://doi.org/10.1016/j.jpowsour.2009.11.149

[41] T. Suzuki, Y. Funahashi, T. Yamaguchi, Y. Fujishuro, M. Awano, Improvement of Micro Tubular SOFCs using Multi-Layered Electrolyte. ECS Trans. 16 (2009) 165-170.

DOI: https://doi.org/10.1149/1.3242231

[42] M.H. Zahir, T. Suzuki, T. Yamaguchi, Y. Fujishiro, M. Awano, Wet atomization of Gd-doped CeO2 electrolyte slurries for intermediate temperature microtubular SOFC application, Fuel Cells 9 (2009) 164-169.

DOI: https://doi.org/10.1002/fuce.200800156

[43] Y. Funahashi, T. Shimamori, T. Suzuki, Y. Fujishuro, M. Awano, Fabrication and characterization of components for cube shaped micro tubular SOFC bundle, J. Power Source 163 (2007) 731-736.

DOI: https://doi.org/10.1016/j.jpowsour.2006.10.002

[44] T. Suzuki, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Design and Fabrication of Lightweight, Submillimeter Tubular Solid Oxide Fuel Cells, Electrochem. Solid State Lett. 10 (8) (2007) A177-A179.

DOI: https://doi.org/10.1149/1.2739211

[45] T. Suzuki, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Effect of anode microstructure on the performance of micro tubular SOFCs, Solid State Ionics 180 (2009) 546-549.

DOI: https://doi.org/10.1016/j.ssi.2008.09.023

[46] M.H. Zahir, K. Sato, H. Mori, Y. Iwamoto, M. Nomura, S.I. Nakao, Preparation and Properties of Hydrothermally Stable g-Alumina-based Composite Mesoporous Membranes, J. Amer. Cera. Soc. 89 (2006) 2874-2880.

DOI: https://doi.org/10.1002/9780470588246.ch31

[47] L. Schlapbach, A. Züttel, Hydrogen-storage materials for mobile applications, Nature 414 (2001) 353-358.

DOI: https://doi.org/10.1038/35104634

[48] T. Suzuki, T. Yamaguchi, K. Hamamoto, Y. Fujishiro, M. Awano, N. Sammes, A functional layer for direct use of hydrocarbon fuel in low temperature solid-oxide fuel cells, Energy Environ. Sci. 4 (2011) 940-943.

DOI: https://doi.org/10.1039/c0ee00231c

[49] Y. Kobaysahi, Y. Ando, T. Kabata, M. Nishimura, K. Tomida, N. Matake, Extremely high-efficiency thermal power system-Solid Oxide Fuel Cell (SOFC) triple combined-cycle system, Mitsubishi Heavy Industries Technical Review, 48 (2011) 9-15.

[50] T. Suzuki, T. Yamaguchi, Y. Fujishiro, M. Awano, Fabrication and characterization of micro tubular SOFCs for operation in the intermediate temperature, J. Power Sources 160, (2006) 73-77.

DOI: https://doi.org/10.1016/j.jpowsour.2006.01.037