Effect of Alloying Elements and Impurity (N) on Bulk and Grain Boundary Cohesion in Cr-Base Alloys


Article Preview

Effect of comprehensive alloying system (W, Ta, Nb, Mo, V, Hf, Ti, Zr, Ni) and impurity N on cohesive properties of the bulk and the special high-angle grain boundary (GB) Σ5 (210)[100] in Cr-base alloys, as well as segregation behavior of impurities at the GB and the (210) free surface are studied by first principles calculations. The analysis of the data obtained allows us to single out W, Ta as the best and nitrogen as the worst interatomic bond strengthening elements for both the bulk and GB in Cr-base alloys. To verify these theoretical results by means of experiment, we investigated an influence of W (up to 10 wt. %), and (Ta, Nb, Hf and Zr) on mechanical properties of Cr-base alloy. We observed an increasing of the strength properties due to W addition and increasing of the plasticity as a result of (Ta, Nb, Hf, Zr) adding.



Edited by:

Prof. Haider F. Abdul Amir, Prof. Alexander M. Korsunsky and Maria Mucha




V. N. Butrim et al., "Effect of Alloying Elements and Impurity (N) on Bulk and Grain Boundary Cohesion in Cr-Base Alloys", Advanced Materials Research, Vol. 1119, pp. 569-574, 2015

Online since:

July 2015




* - Corresponding Author

[1] Е.М. Savitsky, G.S. Burkhanov, Metallurgy of Refractory and Rare Metal Based Alloys, Nauka, Мoscow, (1971).

[2] B.A. Kolachev, V.I. Elagin, V.A. Livanov, Metallurgy and Heat Treatment of Non-Ferrous Metals and Alloys, MISIS, MISIS, (2005).

[3] Materials for Machin-Building Selection and Application, Machinostroenie, Мoscow, (1977).

[4] A.V. Logunov, P.G. Lapin, V.S. Sokolov, S.I. Sinelnikov, A.I. Logacheva, E.G. Denga, P.V. Taran, S.A. Vorobyova, Patent RU 2236480 (2004).

[5] C. Sims, N. Stoloff , W. Hagel, Superalloys II, Wiley, New York, (1987).

[6] M.P. Brady, J.H. Zhu, C.T. Liu, P.F. Tortorelli, L.R. Walker, C.G. McKamey, J.L. Wright, C.A. Carmichael, D.J. Larson, M.K. Miller, W.D. Porter, Materials at high temperatures. 16, 4 (1999)189.

DOI: https://doi.org/10.1179/mht.1999.018

[7] M.P. Brady, P.F. Tortorelli, L.R. Walker, Materials at high temperatures. 17, 2 (2000) 235.

[8] M.P. Brady, J.H. Zhu, C.T. Liu, P.F. Tortorelli, L.R. Walker, Intermetallics. 8 (2000) 1111.

[9] C.T. Liu, J.H. Zhu, M.P. Brady, C.G. McKamey, L.M. Pike, Intermetallics. 8 (2000) 1119.

[10] M.P. Brady, P. Sachenko, Scripta Mat. 52 (2005) 809.

[11] I.M. Razumovskii, A.V. Ruban, V.I. Razumovskiy, A.V. Logunov, V.N. Larionov, O.G. Ospennikova, V.A. Poklad, B. Johansson, Mater. Sci. Eng. A 497 (2008) 18.

DOI: https://doi.org/10.1016/j.msea.2008.08.013

[12] A.V. Logunov, I.M. Razumovskii, G.B. Stroganov, A.V. Ruban, V.I. Razumovskiy, V.N. Larionov, O.G. Ospennikova, V.A. Poklad , Doklady Phys. 53 (2008) 438.

DOI: https://doi.org/10.1134/s1028335808080089

[13] J.R. Rice, R. Thomson, Phil. Mag. 29 (1974) 73.

[14] J. R. Rice, J-S. Wang, Mater. Sci. Eng. A 107 (1989) 23.

[15] V. I. Razumovskiy, A.Y. Lozovoi, I.M. Razumovskii, A.V. Ruban, Adv. Mater. Res. 278 (2011) 192.

[16] V.I. Razumovskiy, A.V. Ruban, A.Y. Lozovoi, V.N. Butrim, Yu. Kh. Vekilov, I.M. Razumovskii, Scripta Mat. 65 (2011) 926.

[17] V.I. Razumovskiy, A.Y. Lozovoi, I.M. Razumovskii, Acta Mat., 82, 1 (2015) 369-377.

[18] C. Kittel, Introduction to Solid State Physics 7th ed. Wiley, New York, (1996).

[19] N.A. Dubrovinskaia, L.S. Dubrovinsky, S.K. Saxena, Calphad 21 (1997) 497.

[20] P.E. Blohl, Phys. Rev. B, 50 (1994) 17953.

[21] G. Kresse, J. Furthmuller, Phys. Rev. B 54 (1996) 11169.

[22] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 78 (1997) 1396.