Fluctuation Theorem Application on 2-D Granular Materials Configurations


Article Preview

Probability occurrence between two successive 2-d granular materials configuration, which are related to their entropy, can be used to check history line of the materials configurations. As an example, a well-known Brazil-nut effect will be presented. In small region it seems that this effect violates principle of minimum energy but not as the whole system, where the energy does decrease. In this work effect of temperature is considered constant since the configurations are observed in frozen states instead of dynamic or fluidized states.



Edited by:

Risa Suryana, Kuwat Triyana, Khairurrijal, Heru Susanto and Sutikno




S. Viridi et al., "Fluctuation Theorem Application on 2-D Granular Materials Configurations", Advanced Materials Research, Vol. 1123, pp. 12-15, 2015

Online since:

August 2015




* - Corresponding Author

[1] D.J. Evans, .J. Searles, The fluctuation theorem, Adv. Phys. 51 (2002) 1529-1585.

[2] J. Kurchan, Fluctuation theorem for stochastic dynamics, J. Phys. A: Math. Gen. 31 (1998) 3719-3729.

[3] G.E. Crooks, Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences, Phys. Rev. E 60 (1999) 2721-2726.

DOI: https://doi.org/10.1103/physreve.60.2721

[4] D. Collin, F. Ritort, C. Jarzynski, S. B. Smith, I. Tinoco Jr, C. Bustamante, Verification of the Crooks fluctuation theorem and recovery of RNA folding free energies, Nature 437 (2005) 231-234.

DOI: https://doi.org/10.1038/nature04061

[5] R. von Zon, E.G.D. Cohen, Extension of the fluctuation theorem, Phys. Rev. Lett. 91 (2003) 110601.

[6] H. J. Herrmann, On the thermodynamics of granular media, J. Phys. II France 3 (1993) 427-433.

[7] M.D. Shattuck, R.A. Ingale, P.M. Reis, Granular thermodynamics, in: M. Nakagawa, S. Luding (Eds. ), The 6th International Conference on Micromechanics of Granular Media-2009, AIP Conference Proceedings 1145, American Institute of Physics, Melville, NY, 2009, pp.43-50.

DOI: https://doi.org/10.1063/1.3179956

[8] M.E. Möbius, X. Cheng, P. Eshuis, G.S. Karczmar, S.R. Nagel, H.M. Jaeger, Effect of air on granular size separation in a vibrated granular bed, Phys. Rev. E 72 (2005) 011304.

DOI: https://doi.org/10.1103/physreve.72.011304

[9] S. Viridi, S.N. Khotimah, Novitrian, Widayani, L. Haris, D.P.P. Aji, Studying Brazil-nut effect history line using disk-formed objects, scanner, and web browser, in: Khairurrijal, L. Halim (Eds. ), The 2014 International Conference on Advances in Education Technology (ICAET 2014), Bandung, Indonesia, 16 October 2014, pp.162-165.

DOI: https://doi.org/10.2991/icaet-14.2014.40

[10] U. Seifert, Entropy production along a stochastic trajectory and an integral fluctuation theorem, Phys. Rev. Lett. 95 (2005) 040602.

DOI: https://doi.org/10.1103/physrevlett.95.040602

[11] J. Schäfer, S. Dippel, D.E. Wolf, Force schemes in simulation of granular materials, J. Phys. I France 6 (1996) 5-20.

[12] D.C. Hong, Condensation of hard spheres under gravity, Physica A 271 (1999) 192-199.

[13] A.P.J. Breu, H. -M. Ensner, C.A. Kruelle, I. Rehberg, Reversing the Brazil-nut effect: Competition between percolation and condensation, Phys. Rev. Lett. 90 (2003) 014302.

DOI: https://doi.org/10.1103/physrevlett.90.014302

[14] D.C. Hong, P.V. Quinn, S. Luding, Reverse Brazil nut problem: Competition between percolation and condensation, Phys. Rev. Lett. 86 (2001) 3423-3426.

DOI: https://doi.org/10.1103/physrevlett.86.3423