Longitudinal Profiles of Atom Laser Propagation in a Cigar-Shaped Trap


Article Preview

Focusing on the cigar-shaped trap model, we provide longitudinal profiles of a weakly outcoupled atom laser propagation both inside and outside the Bose-Einstein condensate regions. The propagation itself is generally represented by inhomogeneous Schrödinger equation which is derived from a set of Gross-Pitaevskii equations by applying the available conditions. We also show that by imposing boundary condition and using quantum oscillator model, energy of the outcoupled atom laser outside the Bose-Einstein condensate region is quantized while there is no analytical solution for the propagation of the outcoupled atom laser inside the Bose-Einstein condensate region.



Edited by:

Risa Suryana, Kuwat Triyana, Khairurrijal, Heru Susanto and Sutikno




T. B. Prayitno et al., "Longitudinal Profiles of Atom Laser Propagation in a Cigar-Shaped Trap", Advanced Materials Research, Vol. 1123, pp. 31-34, 2015

Online since:

August 2015




* - Corresponding Author

[1] J. Schneider, A. Schenzle, Output from atom laser: theory vs. experiment, Appl. Phys. B. 69 (1999) 353-356.

DOI: https://doi.org/10.1007/s003400050819

[2] I. Bloch, T.W. Hänsch, T. Esslinger, An atom laser with a cw output coupler, Phys. Rev. Lett. 82 (1999) 3008-3011.

DOI: https://doi.org/10.1103/physrevlett.82.3008

[3] F. Gerbier, P. Bouyer , A. Aspect, Quasi-continuous atom laser in the presence of gravity, Phys. Rev. Lett. 86 (2001) 4729-4732.

DOI: https://doi.org/10.1103/physrevlett.86.4729

[4] A.J. Leggett, Bose-Einstein condensation in the alkali gases: Some fundamental concepts, Rev. Mod. Phys. 73 (2001) 307-356.

DOI: https://doi.org/10.1103/revmodphys.73.307

[5] W. Ketterle, Nobel lecture: When atoms behave as waves: Bose-Einstein condensation and the atom laser, Rev. Mod. Phys. 74 (2002) 1131-1151.

DOI: https://doi.org/10.1103/revmodphys.74.1131

[6] W. Guerin, J. -F. Riou, J.P. Gaebler, V. Josse, P. Bouyer, A. Aspect, Guided quasicontinuous atom laser, Phys Rev. Lett. 97 (2006) 200402-1-200402-4.

DOI: https://doi.org/10.1103/physrevlett.97.200402

[7] J.F. Riou, W. Guerin, Y. Le Coq, M. Fauquemberque, V. Josse, P. Bouyer, A. Aspect, Beam quality of a non-ideal atom laser, Phys Rev. Lett. 96 (2006) 070404-1-070404-4.

DOI: https://doi.org/10.1103/physrevlett.96.070404

[8] G.K. Büning, J. Will, W. Ertmer, C. Klempt, J. Arlt, A slow gravity compensated atom laser, Appl. Phys. B. 100, (2010) 117-123.

DOI: https://doi.org/10.1007/s00340-010-4078-7

[9] Th. Busch, M. Köhl, T. Esslinger, K. Mølmer, Tranverse mode of an atom laser, Phys. Rev. A 65 (2002) 043615-1-043615-4.

DOI: https://doi.org/10.1103/physreva.65.069902

[10] G. Cennini, G. Ritt, C. Geckeler, M. Weitz, All-optical realization of an atom laser, Phys Rev. Lett. 91 (2003) 240408-1-240408-4.

DOI: https://doi.org/10.1103/physrevlett.91.240408

[11] A. Couvert, M. Jeppesen, T. Kawalec, G. Reinaudi, R. Mathevet, D. Guéry-Odelin, A quasi-monomode guided atom-laser from an all-optical Bose-Einstein condensate, Europhys. Lett. 83 (2008) 50001, Arxiv: 0802. 2601.

DOI: https://doi.org/10.1209/0295-5075/83/50001

[12] J.F. Riou, Y. Le Coq, F. Impens, W. Guerin, C.J. Bordé, A. Aspect, P. Bouyer, Theoretical tools for atom laser beam propagation, Phys. Rev. A 77 (2008) 033630-1-033630-10.

DOI: https://doi.org/10.1103/physreva.77.033630

[13] V.M. Pérez-García, H. Michinel, H. Herrero, Bose-Einstein solitons in highly asymmetric traps, Phys. Rev. A 57 (1998) 3837-3842.

DOI: https://doi.org/10.1103/physreva.57.3837

[14] T.B. Prayitno, Schematic way to find solution of the outcoupled matter wave with a source term, AIP Conf. Proc. 1554 (2013) 181-185.

DOI: https://doi.org/10.1063/1.4820315

Fetching data from Crossref.
This may take some time to load.