Large-Scale Synthesis of ZnO Nanorods by a Surfactant-Free and Low-Temperature Process

Abstract:

Article Preview

ZnO nanorods have been successfully synthesized by employing ZnCl2, NaOH as the starting materials without surfactants, template supporting and structure-directing solvent at a low temperature (room temperature – 90 °C ). X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) were used to analyze the crystal structure and surface morphology. XRD pattern analysis showed that the ZnO clusters are single hexagonal phase of wurtzite structure with no impurity of others. Also, TEM images revealed that the size of a single ZnO nanorod is between 32 – 60 nm in diameter and 470 – 740 nm in length. Furthermore, the ZnO nanorods exhibit significant optical properties in Raman spectrum, suggesting that they could be found promising potential for opto-electronic application.

Info:

Periodical:

Advanced Materials Research (Volumes 113-116)

Edited by:

Zhenyu Du and X.B Sun

Pages:

1740-1743

DOI:

10.4028/www.scientific.net/AMR.113-116.1740

Citation:

Z. X. Ma et al., "Large-Scale Synthesis of ZnO Nanorods by a Surfactant-Free and Low-Temperature Process", Advanced Materials Research, Vols. 113-116, pp. 1740-1743, 2010

Online since:

June 2010

Export:

Price:

$35.00

[1] Zhong Lin Wang: J. Phys.: Condens. Matter Vol. 16 (2004), p. R829.

[2] Umair Manzoor and Do Kyung Kim: Scripta Mater. Vol. 54 (2006), p.807.

[3] Xiang Yang Kong and Zhong Lin Wang: Nano Lett. Vol. 3(2003) , p.1625.

[4] Xiang Yang Kong and Zhong Lin Wang: Appl. Phys. Lett. Vol. 84 (2004), p.975.

[5] M. Sima, I. Enculescu and E. Vasile: J. Optoelectron. Adv. Mater. Vol. 8(2006) , p.825.

[6] Puxian Gao and Zhong Lin Wang: J. Phys. Chem. B Vol. 106 (2002) , p.12653.

[7] Xianghua Kong, Xiaoming Sun, Xiaolin Li and Yadong Li: Mater. Chem. Phys. Vol. 82(2003), p.997.

[8] Chin-Hsien Hung and Wha-Tzong Whang: Mater. Chem. Phys. Vol. 82 (2003) , p.705.

[9] A. Umar, S.H. Kim, Y.H. Im and Y.B. Hahn: Superlattices Microstruct. Vol. 39 (2006) , p.238.

[10] Jinping Liu, Xintang Huang, Yuanyuan Li, Jinxia Duan and Hanhua Ai: Mater. Chem. Phys. Vol. 98 (2006) , p.523.

[11] Jason B. Baxter and Eray S. Aydil: Sol. Energy Mater. Sol. Cells Vol. 90 (2006), p.607.

[12] Caihong Wang, Xiangfeng Chu and Mingmei Wu: Sens. Actuators, B Vol. 113 (2006), p.320.

[13] Jing Liqiang, Sun Xiaojun, Shang Jing, Cai Weimin, Xu Zili, Du Yaoguo and Fu Honggang: Sol. Energy Mater. Sol. Cells Vol. 79 (2003) , p.133.

DOI: 10.1016/s0927-0248(02)00393-8

[14] Chi-Jung Chang, Mei-Hui Tsai, Yu-Hsiang Hsu and Chi-Shen Tuan: Thin Solid Films Vol. 516(2008) , p.5523.

DOI: 10.1016/j.tsf.2007.07.078

[15] Leo P. Schuler, Maan M. Alkaisi, Paul Miller and Roger J. Reeves: Microelectron. Eng. Vol. 83 (2006) , p.1403.

[16] Y. Wang and M. Li: Mater. Lett. 60 (2006) , p.266.

[17] Y.H. Ni, X.W. Wei, J.M. Hong and Yin Ye: Mater. Sci. Eng. B Vol. 121 (2005), p.42.

[18] Yu Chen, Runzhou Yu, Qian Shi, Jingli Qin and Feng Zheng: Mater. Lett. Vol. 61 (2007), p.4438.

DOI: 10.1016/j.matlet.2007.02.028

In order to see related information, you need to Login.