Effect of Pressure and MoO3 Hole Injection Layer on the Current-Voltage Characteristics of Organic Light Emitting Diodes

Abstract:

Article Preview

We examine the fundamental operation of an Organic Light Emitting Device with emphasis laid on the Hole Transport Layer (HTL) and the optoelectronic properties of the other layers that make up the device. Investigation of the adhesion properties together with surface morphology, electrical and optical characterization of the different layers of the device was carried out. Poly (3,4-ethylenedioxythiophene):poly (styrene sulfonate) (PEDOT: PSS) was used as the conventional HTL material in the first case. This yields the reference device or system under studies. In the second case, PEDOT: PSS was replaced by an inorganic material, molybdenum trioxide (MoO 3 ). The device performance in case two (2) revealed an improvement in performance. A couple of deposition techniques were examined together with the analysis of their effect on the resultant device properties. With the aid of theoretical models, we quantified the results obtained in terms of average pull-off forces and corresponding adhesion energies. The Derjaguin-Muller-Toporov model was utilized to model the adhesion energies between interfaces of adjacent layers of the device. Results that delineate modeling of charge transport across device interfaces are shown including the effects of pressure on the device optoelectronic properties.

Info:

Periodical:

Edited by:

Prof. Wole Soboyejo, Dr. Shola Odusunya, Dr. Zebaze Kana, Dr. Nicolas Anuku, Dr. Karen Malatesta and Dr. Mohammed Dauda

Pages:

160-165

Citation:

V.C. Anye et al., "Effect of Pressure and MoO3 Hole Injection Layer on the Current-Voltage Characteristics of Organic Light Emitting Diodes", Advanced Materials Research, Vol. 1132, pp. 160-165, 2016

Online since:

December 2015

Export:

Price:

$38.00

[1] C.W. Tang, S.A. Van Slyke, Organic Electroluminescent diodes, Appl. Phys. Lett. 51 (1987) 913.

[2] R.H. Friend, R.W. Gymer, A.B. Holmes, J.H. Burroughes, R.N. Marks, C. Taliani, D.D.C. Bradley, D.A. Dos Santos, J.L. Bredas, M. Löglund, W.R. Salaneck, Nature 397 (1999) 121.

DOI: https://doi.org/10.1038/16393

[3] T. Tong, B. Babatope, S. Admassie, J. Meng, O. Akogwu, W. Akande, and W. O. Soboyejo, Adhesion in organic electronic structures. Journal Of Applied Physics 106, 083708 (2009).

DOI: https://doi.org/10.1063/1.3246786

[4] J.H. Burroughes, D.D. C. Bradley, A.R. Brown, R.N. Marks, K. Mackay, R. H. Friend, P.L. Burn and A. B. Holmes, Light-emitting diodes based on conjugated polymers, Nature 347, pp.539-541(1990).

DOI: https://doi.org/10.1038/347539a0

[5] J. Zmija, M.J. Malachowski, Organic Light Emitting Diodes Operation in displays, Archives of Materials Science and Engineering 40/1(2009) 5-12.

[6] Wali O. Akande, Onobu Akogwu, Tiffany Tong, and Wole Soboyejo, Thermally induced surface instabilities in polymer light emitting diodes, J. Appl. Phys. 108, 023510 (2010).

DOI: https://doi.org/10.1063/1.3448035

[7] Y. Shirota, H. Kageyama, Charge Carrier Transporting Molecular Materials and their Applications in Devices, Chem. Rev. 2007, 107, 953-1010.

DOI: https://doi.org/10.1021/cr050143+

[8] J. J. Berry, D. S. Ginley, and P. E. Burrows, Organic light emitting diodes using a Ga: ZnO anode, Applied Physics Letters 92, 193304 (2008).

DOI: https://doi.org/10.1063/1.2917565

[9] Jong H. Kim, Soon-min Seo, and Hong H. Lee, Nanovoid nature and compression effects in organic light emitting diode, Applied Physics Letters 90, 143521 (2007).

DOI: https://doi.org/10.1063/1.2720268

[10] J. Meyer, K. Zilberberg, T. Riedl and A. Kahn, Electronic Structure of Vanadium pentoxide: An efficient hole injector for organic electronic materials, J. App. Phy. 110, 033710(2011).

DOI: https://doi.org/10.1063/1.3611392

[11] K. X. Steirer, J. P. Chesin, N. E. Widjonarko, J. J. Berry, A. Miedaner, D. S. Ginley, and D. C. Olson, Solution deposited NiO thin-films as hole transport layers in organic photovoltaics, Org. Electron. 11(8), 1414 (2010).

DOI: https://doi.org/10.1016/j.orgel.2010.05.008

[12] J. Meyer, R. Khalandovsky, P. Go¨rrn, and A. Kahn, MoO3 Films Spin-Coated from a Nanoparticle Suspension for Efficient Hole-Injection in Organic Electronics, Adv. Mater. 23(1), 70(2011).

DOI: https://doi.org/10.1002/adma.201003065

[13] K. Zilberberg, S. Trost, H. Schmidt and T. Riedl, Solution Processed Vanadium Pentoxide as Charge Extraction Layer for Organic Solar Cells, Advanced Energy Materials 1, 377 (2011).

DOI: https://doi.org/10.1002/aenm.201100076

[14] B. V. Derjaguin, V. M. Muller, and Y. P. Toporov, J. Colloid Interface Sci. 53, 314 (1975).

[15] R. A. Quon, R. F. Knarr, and T. K. Vanderlick, J. Phys. Chem. B 103, 5320 (1999).

[16] Derjaguin, BV and Muller, VM and Toporov, Y.P., 1975, Effect of contact deformations on the adhesion of particles, Journal of Colloid and Interface Science, 53(2), pp.314-326.

DOI: https://doi.org/10.1016/0021-9797(75)90018-1

[17] Zong Zong, a_ Yifang Cao, Nima Rahbar, and Wole Soboyejo, Nano- and microscale adhesion energy measurement for Au–Au contacts in microswitch structures Journal Of Applied Physics 100, 104313 (2006).

DOI: https://doi.org/10.1063/1.2388688