Biosynthesis of Gold Nanoparticles with Serratia marcescens Bacteria

Abstract:

Article Preview

This paper presents the biosynthesis of gold nanoparticles from the bacteria, Serratia marcescens. The intra-and extra-cellular synthesis of gold nanoparticles is shown to occur over a range of pH and incubation times in cell-free exracts and biomass of serratia marcescens that were reacted with 2.5mM Tetrachloroauric acid (HAuCl4). The formation of gold nanoparticles was identified initially via color changes from yellow auro-chloride to shades of red or purple in gold nanoparticle solutions. UV-Visible spectroscopy (UV-Vis), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray spectroscopy (EDS), Helium Ion Microscopy (HIM) and Dynamic Light Scattering (DLS) were also used to characterize gold nanoparticles produced within a range of pH conditions. The results show clearly that the production of gold nanoparticles from cell-free extracts require shorter times than the production of gold nanoparticles from the biomass.

Info:

Periodical:

Edited by:

Prof. Wole Soboyejo, Dr. Shola Odusunya, Dr. Zebaze Kana, Dr. Nicolas Anuku, Dr. Karen Malatesta and Dr. Mohammed Dauda

Pages:

19-35

Citation:

S.O. Dozie-Nwachukwu et al., "Biosynthesis of Gold Nanoparticles with Serratia marcescens Bacteria", Advanced Materials Research, Vol. 1132, pp. 19-35, 2016

Online since:

December 2015

Export:

Price:

$41.00

* - Corresponding Author

[1] S. Neeleshwar, C.L. Chen, C.B. Tsai, Y.Y. Chen, C.C. Chen, S.G. Shyu, M.S. Seehra, Size-dependent properties of CdSe quantum dots. Phys Rev B, 71: 201307 (2005) 1–4.

DOI: https://doi.org/10.1103/physrevb.71.201307

[2] K. Deplanche, L.E. Macaskie, Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng, 99 (2008) 1055- 1064.

DOI: https://doi.org/10.1002/bit.21688

[3] O.V. Salata, Application of nanoparticles in biology and medicine. J Nanobiotechnol 2 (2004) 3–9.

[4] W.M. Tolles, Nanoscience and nanotechnology in Europe. Nanotechnology 7 (2) (1996)59.

[5] P.R. Selvakannan, S. Mandal, S. Phadtare, A. Gole, R. Pasricha, S.D. Adyanthaya, M. Sastry, Water-dispersible tryptophan-protected gold nanoparticles prepared by the spontaneous reduction of aqueous chloroaurate ions by the amino acid. J. Colloid Interface Sci. 269(2004).

DOI: https://doi.org/10.1016/s0021-9797(03)00616-7

[6] Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601) (2002) 2176-2179.

DOI: https://doi.org/10.1126/science.1077229

[7] K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, Y. Yobiko, Formation of colloidal gold nanoparticles in an ultrasonic field: control of rate of gold (III) reduction and size of 338 formed gold particles, Langmuir, 17, (2001)7717-7720.

DOI: https://doi.org/10.1021/la010414l

[8] J.R. Stephen, S.J. Macnaughton, Developments in terrestrial bacterial remediation of metals. Curr. Opin. Biotechnol. 10, (1999) 230–233.

[9] P. Mukherjee, A. Ahmad A, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parischa, P.V. Ajayakumar, M. Alam, R. Kumar, M. Sastry, Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett, 15(2001).

DOI: https://doi.org/10.1021/nl0155274

[10] A. Singh, D. Jain, M.K. Upadhyay, N. Khandelwal, H.N. Verma, Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Digest Journal of Nanomaterials and Biostructures 5 (2) (2010).

[11] L. Arangasamy, V. Munusamy, Tapping the unexploited plant resources for the synthesis of silver nanoparticles. African Journal of Biotechnology 7 (17) (2008) 3162-3165.

[12] H. Melanie, S. Ulrich, On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Phil. Trans. R. Soc. A, (368): (2010)1405–1453.

[13] A. Rochelle, B. Resham, P. Mukherjee, Gold nanoparticles: opportunities and challenges in nanomedicine. Expert Opinion on Drug Delivery, 7(6) (2010) 753-763.

DOI: https://doi.org/10.1517/17425241003777010

[14] M. Valden, X. Lai, D.W. Goodman, Onset of catalytic activity of gold clusters on Titania with the appearance of nonmetallic properties, Science, 281(5383) (1998) 1647-1650.

DOI: https://doi.org/10.1126/science.281.5383.1647

[15] M. Haruta and M. Date Advances in the catalysis of Au nanoparticles, Appl. Catal., A, 222 (2001) 427–437.

[16] H.H. Kung, M.C. Kung, C.K. Costello, Supported Au catalysts for low temperature CO oxidation, J. Catal., 216 (2003) 425–432.

DOI: https://doi.org/10.1016/s0021-9517(02)00111-2

[17] A. Ahmad, S. Senapati, M.I. Khan, R. Kumar, M. Sastry, Extracellular Biosynthesis of Monodisperse Fold Nanoparticles by a Novel Extremophilic Actinomycete Thermonospora sp. Langmuir, 19: (2003) 3550-3553.

DOI: https://doi.org/10.1021/la026772l

[18] X. Zhang, S. Yan, R.D. Tyagi, R.Y. Surampalli, Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere, 82: (2011)489-494.

DOI: https://doi.org/10.1016/j.chemosphere.2010.10.023

[19] X. Li, H. Xu, Z.S. Chen, G. Chen, Biosynthesis of Nanoparticles by Microorganisms and Their Applications. J Nanomater 2011(2011). Article ID 270974, 16 pages.

[20] A. Gole, C. Dash, S.R. Sainkar, A.B. Mandale, M. Rao, M. Sastry, Extracellular biosynthesis of silver nanoparticles using the fungusFusarium oxysporum, Analytical Chemistry, 72(2000) 1401–1403.

[21] M. I Husseiny, M.A. El-Aziz, Y. Badr, M.A. Mahmoud Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa, Spectrochimica Acta Part A, 67 (3-4) (2007) 1003–1006.

DOI: https://doi.org/10.1016/j.saa.2006.09.028

[22] S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, N. Gu, Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata, Materials Letters, 61(18) (2007) 3984–3987.

DOI: https://doi.org/10.1016/j.matlet.2007.01.018

[23] Y. Konishi, T. Tsukiyama, T. Tachimi, N. Saitoh, T. Nomura, S. Nagamine, Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae, Electrochimica Acta, 53 (1) (2007) 186–192.

DOI: https://doi.org/10.1016/j.electacta.2007.02.073

[24] P. Mohanpuria, N.K. Rana, S.K. Yadav, Biosynthesis of nanoparticles: technological concepts and future applications, " Journal of Nanoparticle Research, 10 (3) (2008) 507–517.

DOI: https://doi.org/10.1007/s11051-007-9275-x

[25] T. J Beveridge, R.G.E. Murray, Sites of Metal Deposition in the Cell Wall of Bacillus subtilis. J. Bacteriol, 141 (1980) 876-887.

[26] Y. Konish, N. Deshmukh, T. Tsukiyama, N. Saitoh, Biosynthesis and Characterization of Manganese and Zinc Nanoparticles Trans. Mater. Res. Soc. Jpn., 29 (2004)23-41.

[27] P. Mukherjee, S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, R. Kumar, M. Sastry, Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3: (2002) 461–463.

DOI: https://doi.org/10.1002/1439-7633(20020503)3:5<461::aid-cbic461>3.0.co;2-x

[28] A. Ahmad, S. Senapati, M.I. Khan, R. Ramani, V. Srinivas, M. Sastry, Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnol., 14 (2003a)824-838.

DOI: https://doi.org/10.1088/0957-4484/14/7/323

[29] M. Benoit, H.E. Gaub, Measuring cell adhesion forces with the atomic force microscope at the molecular level. Cell tissue organs 172(3) (2002)174-89.

DOI: https://doi.org/10.1159/000066964

[30] J. Helenius, C.P. Heisenberg, H.E. Gaub, D.L. Muller, Single cell force spectroscopy. Journal of cell science 121(11) (2008) 1785-1791.

DOI: https://doi.org/10.1242/jcs.030999

[31] M. Benoit, C. Selhuber-unkel, Measuring cell adhesion forces: theory and principles. Methods Mol Biol 736 (2011) 355-77.

[32] E. Hampp, R. Botah, O.S. Odusanya, N. Anuku, K.A. Malatesta, W.O. Soboyejo, Biosynthesis and adhesion of gold nanoparticles for breast cancer detection and treatment. Journal of Materials Research, 27 (22), (2012) 2891 -2901.

DOI: https://doi.org/10.1557/jmr.2012.317

[33] J.B. Don, R.K. Noel, T.S. James, [1984 (Williams & Wilkins)]. George M. Garrity, ed. The Gammaproteobacteria. Bergey's Manual of Systematic Bacteriology 2B (2nd ed. ). NewYork: Springer (2005) 1108.

[34] M. Noruzi, D. Zare, D. Davoodi, A rapid biosynthesis route for the preparation of gold nanoparticles by aqueous extract of cypress leaves at room temperature. Spectrochim Acta A Mol Biomol Spectrosc 94: (2012) 84–88.

DOI: https://doi.org/10.1016/j.saa.2012.03.041

[35] Malarkodi, C, Rajeshkumar, S, Vanaja, M, Paulkumar, K, Gnanajobitha, G, Annadurai, G: Eco-friendly synthesis and characterization of gold nanoparticles using Klebsiella pneumoniae. J Nanostruct Chem 3, 30 (2013) 1-7.

DOI: https://doi.org/10.1186/2193-8865-3-30

[36] Swetha Sunkar, C. Valli Nachiyar, K. Renugadevi, Endophytic Bacillus cereus mediated synthesis of gold nanoparticles and their stabilization using biopolymer chitosan J. Chem. Pharm. Res., 6(11) (2014) 434-443.

DOI: https://doi.org/10.1007/s11051-014-2681-y

[37] Y. Xia, N.J. Halas, Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 30: (2005) 338–348.

DOI: https://doi.org/10.1557/mrs2005.96

[38] M.M.H. Khalil, E.H. Ismail, F. El-Magdoub, Biosynthesis of Au nanoparticles using olive leaf extract: 1st nano updates. Arab J Chem 5: (2012) 431–437.

DOI: https://doi.org/10.1016/j.arabjc.2010.11.011

[39] P.N. Njoki, I.I.S. Lim, D. Mott, H. Park, B. Khan, S. Mishra, R. ujakumar, J. Luo, C. Zhong, Size correlation of optical and spectroscopic properties for gold nanoparticles, Journal of Physical Chemistry C, 111(40) (2007) 14664–1466.

DOI: https://doi.org/10.1021/jp074902z

[40] A. Kumar, P.K. Vemula, P.M. Ajayan, G. John, Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat. Mater. 7, (2008) 236–241.

DOI: https://doi.org/10.1038/nmat2099

[41] J. Xie, Y. Zheng, J.Y. Ying, Protein-Directed Synthesis of Highly Fluorescent Gold Nanoclusters J. Am. Chem. Soc. 131(3) (2009 )888–889.

DOI: https://doi.org/10.1021/ja806804u

[42] M. Gericke, P. Anthony, Microbial production of gold nanoparticles. Gold Bulletin 39 (1) (2006) 22-28.

DOI: https://doi.org/10.1007/bf03215529

[43] M.L. Suryawanshi, A. M Deshmukh, Studies on aquatic actinomycetes from Shivaji Sagar, Ph. D. thesis, Shivaji University, Kolhapur, India. (2008).

[44] K. Kathiresan, S. Manivannan, M. A Nabeel, B. Dhivya, Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids and Surfaces B: Biointerfaces. 71: (2009)133-137.

DOI: https://doi.org/10.1016/j.colsurfb.2009.01.016

[45] R. Joerger, T. Klaus, C.G. Granqvist, Biologically produced silver-carbon composite materials for optically functional thin-film coatings. Adv Mater 12 (2000)407-409.

DOI: https://doi.org/10.1002/(sici)1521-4095(200003)12:6<407::aid-adma407>3.3.co;2-f

[46] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Parischa, P.V. Ajayakumar, M. Alam, M. Sastry, R. Kumar, Bioreduction of AuCl(4)(-) Ions by the Fungus, Verticillium sp. and Surface Trapping of the Gold Nanoparticles. Angew Chem Int Ed Engl. 40(19) (2001).

DOI: https://doi.org/10.1002/1521-3773(20011001)40:19<3585::aid-anie3585>3.0.co;2-k

[47] B. Nair, T. Pradeep, Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2: (2002)293-298.

DOI: https://doi.org/10.1021/cg0255164

[48] D.R. Bhumkar, H.M. Joshi, M. Sastry, V.B. Pokharkar, Chitosan reduced gold nanoparticles as novel carriers for transmucosal delivery of insulin. Pharm. Res., 24 (2007) 1415-1426.

DOI: https://doi.org/10.1007/s11095-007-9257-9

[49] N.N. Mallikarjuna, S.V. Rajender, Green Synthesis of Ag and Pd Nanospheres, Nanowires, and Nanorods Using Vitamin : Catalytic Polymerisation of Aniline and Pyrrole, Journal of Nanomaterials, vol. 2008, Article ID 782358, (2008) 8 pages.

DOI: https://doi.org/10.1155/2008/782358

[50] Sun, Kai; Qiu, Jingxia; Liu, Jiwei; Miao, Yuqing (2007). Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles. Journal of Materials Science. Vol. 44 Issue 3, pp.754-758.

DOI: https://doi.org/10.1007/s10853-008-3162-4

[51] R. Lemberg, J. Barrett, Cytochromes (Academic New York), (1973) 277-279.

[52] B.W. Arey, V. Shutthanandan, W. Jiang, Helium Ion Microscopy versus Scanning Electron Microscopy, W. R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, K8-80, Richland, WA 99354.

[53] S. Khurshid, E. Saridakis, L. Govada, N.E. Chayen, Porous nucleating agents for protein crystallization, Nature Protocols 9, (2014)1621–1633.

DOI: https://doi.org/10.1038/nprot.2014.109

[54] T.S. Hauck, A.A. Ghazani, W.C. Chan, Assessing the Effect of Surface Chemistry on Gold Nanorod Uptake, Toxicity, and Gene Expression in Mammalian Cells. Small, 4(1) (2007) 153 – 159.

DOI: https://doi.org/10.1002/smll.200700217

[55] J. Chen, F. Saeki, B.J. Wiley, H. Cang, M.J. Cobb, Z. Li, L. Au, H. Zhang, M.B. Kimmey, X. Li, Y. Xia, Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents. Nano Lett. 5(3) (2005) 473-477.

DOI: https://doi.org/10.1021/nl047950t

[56] C. Loo, A. Lowery, N. Halas, J. West, R. Drezek. Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett ; 5 (2005) 709–11.

DOI: https://doi.org/10.1021/nl050127s

[57] C. Loo, A. Lin, L. Hirsch, M.H. Lee, J. Barton, N. Halas, J. West, R. Drezek, Nanoshell-enabled photonics-based imaging and therapy of cancer. Tech. Cancer Res. Treat. 3(1) (2004) 33-40.

DOI: https://doi.org/10.1177/153303460400300104

[58] L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance. Proc. Natl. Acad. Sci. USA 100(23) (2003).

DOI: https://doi.org/10.1073/pnas.2232479100

[59] P. Mukherjee, R. Bhattacharya, Wang P, L. Wang, S. Basu, J.A. Nagy, A. Atala, D. Mukhopadhyay, S. Soker, Antiangiogenic properties of gold nanoparticles. Clin. Cancer Res. 11(9) (2005) 3530-3534.

[60] J.F. Hainfeld, D.N. Slatkin, H.M. Smilowitz, The use of gold nanoparticles to enhance radiotherapy in mice. Phys. Med. Biol. 49 (2004) N309-N315.

DOI: https://doi.org/10.1088/0031-9155/49/18/n03

[61] J.A. Reddy, V.M. Allagadda, C.P. Leamon, Targeting therapeutic and imaging agents to folate receptor positive tumors. Curr. Pharm. Biotechnol. 6(2) (2005) 131-150.

DOI: https://doi.org/10.2174/1389201053642376

[62] M. Cascante, J.J. Centelles, R.L. Veech, W.N. Lee, L.G. Boros, Role of thiamin (vitamin B-1) and transketolase in tumor cell proliferation. Nutr. Cancer. 36(2) (2000) 150-154.

DOI: https://doi.org/10.1207/s15327914nc3602_2

[63] J.W. Park, C.C. Benz, F.J. Martin, Future directions of liposome- and immunoliposome-based cancer therapeutics. Semin. Oncol. 31(6 Suppl. 13) (2004) 196-205.

DOI: https://doi.org/10.1053/j.seminoncol.2004.08.009

[64] I.H. El-Sayed, X. Huang, M.A. El-Sayed, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett. 5(5) (2005) 829-834.

DOI: https://doi.org/10.1021/nl050074e

[65] A. Fabien, P. Stéphane, G. David, N. Christophe, L. Stéphane, L. Kamal, G. Christian, V. Dominique. An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse. Advanced Functional Materials, 20 (2) (2010) 330-337.

DOI: https://doi.org/10.1002/adfm.200901335

[66] S. Michal, M.M. Ben, F. Ron, S. Assaf, D. Tal, Nanoengineering gold particle composite fibers for cardiac tissue engineering. J. Mater. Chem. B, 1 (2013) 5210-5217.

DOI: https://doi.org/10.1039/c3tb20584c