Bioinspired Design


Article Preview

Bioinspired design involves the use of concepts observed in natural biological materials in engineering design. The hope is that the leveraging of biological materials in the engineering domain can lead to many technological innovations and novel products. This work presents the initial material characterization of kinixys erosa tortoise shell using a combination of x-ray diffraction, optical/scanning electron microscopy and micro-mechanical testing. The results were used in the analytical/computational modelling of shell structures. The potential implications or the results were then discussed to give fundamental understanding of deformation and stress responses of shell structures



Edited by:

Prof. Wole Soboyejo, Dr. Shola Odusunya, Dr. Zebaze Kana, Dr. Nicolas Anuku, Dr. Karen Malatesta and Dr. Mohammed Dauda




T.A. Owoseni et al., "Bioinspired Design", Advanced Materials Research, Vol. 1132, pp. 252-266, 2016

Online since:

December 2015




* - Corresponding Author

[1] Abdulkadir, E. 2010. BioMimetic/BioInspired Robots and Mechatronics Engineering Design. PowerPoint Presentation at Department of Mechatronics Engineering Atılım University Ankara, Turkey. Accessed 18 June 2012, 03: 53 p. m.

[2] Barthelat, F. 2007. Biomimetics for Next Generation Materials. Phil. Trans. R. Soc. A 365, 2907–2919 (doi: 10. 1098/rsta. 2007. 0006).

[3] Jackson, A. P., Vincent, J. F. V. & Turner, R. M. 1988. The Mechanical Design of Nacre. Proc. R. Soc. B 234, 415–440 (doi: 10. 1098/rspb. 1988. 0056).

[4] Sanchez, C., Arribart, H. & Giraud Guille, M. M. 2005. Biomimetism and Bioinspiration as Tools for the Design of Innovative Materials and Systems. Nat. Mater. 4, 277–288.


[5] Meyers, M. A., Chen, P. Albert, Y. L., Yasuaki, S. 2008. Biological Materials: Structure and Mechanical Properties. Progress in Materials Science. 53, pp.1-206.

[6] Munch, E., Launey, M. E., Alsem, D. H., Saiz, E., Tomsia, A. P., Ritchie R. O. 2008. Tough, Bio-inspired Hybrid Materials. Science Vol. 322 no. 5907 pp.1516-1520 doi: 10. 1126/science. 1164865.


[7] Niu, X., Rahbar, N., Farias, S., Soboyejo, W. 2009. Bio-inspired Design of Dental Multilayers: Experiments and model. JMBBM Vol. 2 issues 6 pp.596-602.

[8] Wei Z., Chengwei W., Chenzhao Z. *, and Zhen C. Microstructure and mechanical property of turtle shell. : The Chinese Society of Theoretical and Applied Mechanics, 2012, Theoretical & Applied Mechanics Letters 2.


[9] Rhee, H., Horstemeyer, M. F., Hwang, Y., Lim, H., El Kadiri, H., Trim, W. A study on the structure and mechanical behavior of the Terrapene carolina carapace: A pathway to design bio-inspired synthetic composites. s. l. : Elsevier, 2009, Materials Science and Engineering C, pp.2333-2339.


[10] Kantesh, B., Riken, R. P., Anup, K. K., Debrupa, L., Arvind, A. Multi-scale hierarchy of Chelydra serpentina: Microstructure and mechanical properties of turtle shell. s. l. : Elsevier, 2011, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, pp.1440-1451.


[11] Magwene, P. M., Socha, J. J. Biomechanics of turtle shells: How whole shells fail in compression. 2012. J. Exp. Zool. 9999A: 1 – 13.


[12] Stephen T. and Woinowsky-Krieger S. Theory of Plates and Shels. Singapore : McGraw-Hill, Inc., 1959. 0-07-085820-9.

[13] Foster & Smith Inc. Shells: Anatomy and Diseases of Turtle and Tortoise Shells, Accessed 20 June 2012, 09: 52 p. m.

[14] William F. S. and Javad H., Foundations of Materials Science and Engineering 4th edition. McGraw-Hill, New York, (2006).