Biosynthesis of Gold Nanoparticles from Nauclea latifolia Leaves

Abstract:

Article Preview

The biosynthesis of gold nanoparticles from Nauclea latifolia leaf/plant extract is presented in this paper. The synthesis is shown to produce gold nanoparticles from hydrogen Tetra-chloro auric acid (HAuCl4) in less than 1 minute. The resulting gold nanoparticles are characterized using UV/Visible spectrophotometry (UV-Vis), Energy Dispersive X-ray Spectroscopy (EDX), Dynamic Light Scattering (DLS) and Transmission Electron Microscopy (TEM). The implications of the results are discussed for potential applications of biosynthesized gold nanoparticles in cancer detection and treatment.

Info:

Periodical:

Edited by:

Prof. Wole Soboyejo, Dr. Shola Odusunya, Dr. Zebaze Kana, Dr. Nicolas Anuku, Dr. Karen Malatesta and Dr. Mohammed Dauda

Pages:

36-50

Citation:

S.O. Dozie-Nwachukwu et al., "Biosynthesis of Gold Nanoparticles from Nauclea latifolia Leaves", Advanced Materials Research, Vol. 1132, pp. 36-50, 2016

Online since:

December 2015

Export:

Price:

$38.00

[1] T. Jennings, G. Strouse, Past, present and future of gold nanoparticles. Adv Exp Med Biol. 620 (2007) 34 – 47.

[2] Holiday R. Use of gold in medicine and surgery. Biomedical Scientist (The Official Gazette of the Institute of Biomedical science, UK) (2008) 962-63.

[3] L. A. Dykman, N. G. Khlebtsov, Gold Nanoparticles in Biology and Medicine: Recent Advances and Prospects. Acta Naturae 3 (2) (2011) 34-55.

[4] P.O. Chen, S.C. Mwakwari, A.K. Oyelere, Gold nanoparticles: From nanomedicine to nanosensing. Nanotechnology, Science and Applications. 1: (2008) 45–66.

DOI: https://doi.org/10.2147/nsa.s3707

[5] G. Canizal, J.A. Ascencio, J. Gardea-Torresday, M. Jose-Yacaman, Multiple twinned gold nanorods grown by bio-reduction techniques. J. Nanoparticle Res. 3 (2001) 475-481.

DOI: https://doi.org/10.1023/a:1012578821566

[6] Y. Zhou, S.H. Yu, X.P. Cui, C.Y. Wang, Z.Y. Chen, Formation of Silver Nanowires by a Novel Solid- Liquid Phase Arc Discharge Method. Chem. Mater. 11 (1999) 545-546.

DOI: https://doi.org/10.1021/cm981122h

[7] Y. Sun, B. Mayers, T. Herricks, Y. Xia, Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Lett. 3 (2003) 955-960.

DOI: https://doi.org/10.1021/nl034312m

[8] F. Mouxing, L. Qingbiao, S. Daohua, L. Yinghua, H. Ning, D. Xu, W. Huixuan, H. Jiale, Rapid Preparation Process of Silver Nanoparticles by Bioreduction and Their Characterizations. Chin. J. Chem. Eng. 14(1) (2006) 114- 117.

DOI: https://doi.org/10.1016/s1004-9541(06)60046-3

[9] P. R. Selvakannan, S. Mandal, R. Pasricha, S. D. Adyanthaya, M. Sastry, One-step synthesis of hydrophobized gold nanoparticles of controllable size by the reduction of aqueous chloroaurate ions by hexadecylaniline at the liquid-liquid interface, Chemical Communications, 13, (2002).

DOI: https://doi.org/10.1039/b203438g

[10] K. Okitsu, A. Yue, S. Tanabe, H. Matsumoto, Y. Yobiko, Formation of colloidal gold nanoparticles in an ultrasonic field: control of rate of gold(III) reduction and size of formed gold particles, " Langmuir, 17( 25) (2001) 7717–7720.

DOI: https://doi.org/10.1021/la010414l

[11] A. Singh, D. Jain, M. K. Upadhyay, N. Khandelwal, H. N. Verma, Green synthesis of silver nanoparticles using Argemone mexicana leaf extract and evaluation of their antimicrobial activities. Digest Journal of Nanomaterials and Biostructures 5 (2) (2010).

[12] A. Leela, M. Vivekanandan, Tapping the unexploited plant resources for the synthesis of silver nanoparticles. African Journal of Biotechnology 7 (17), (2008) 3162-3165.

[13] A. Balaprasad, Biosynthesis of Gold Nanoparticles (Green-Gold) Using Leaf Extract of Terminalia Catappa. E-Journal of Chemistry 7(4) (2010) 1334-1339.

DOI: https://doi.org/10.1155/2010/745120

[14] M. Gericke, A. Pinches, Microbial Production of Gold Nanoparticles. Gold bulletin, 39(1) (2006) 22-28.

DOI: https://doi.org/10.1007/bf03215529

[15] R. Sanghi, P. Verma, S. Puri, Enzymatic Formation of Gold Nanoparticles Using Phanerochaete Chrysosporium, Advances in Chemical Engineering and Science 1 (3) (2011) 154-162.

DOI: https://doi.org/10.4236/aces.2011.13023

[16] Y. Sun, Y. Xia, Shape-controlled synthesis of gold and silver nanoparticles, Science, 298 (5601) (2002) 2176–2179.

DOI: https://doi.org/10.1126/science.1077229

[17] B. Nair, T. Pradeep, Coalescence of Nanoclusters and Formation of Submicron Crystallites Assisted by Lactobacillus Strains Crystal Growth and Design, 2 (2002) 293.

DOI: https://doi.org/10.1021/cg0255164

[18] D.K. Chatterjee, P. Diagardjane, S. Krishnan, Nanoparticle-mediated hyperthermia in cancer therapy. Ther Deliv; 2(8) (2011) 1001-14.

[19] F. Mafune, J. Kohno, Y. Takeda, Full Physical Preparation of Size-Selected Gold Nanoparticles in Solution:  Laser Ablation and Laser-Induced Size Control J. Phys. Chem. B106 (31) (2002) 7575–7577.

DOI: https://doi.org/10.1021/jp020577y

[20] J.R. Stephen, S.J. Maenaughton, Developments in terrestrial bacterial remediation of metals. Curr Opin Biotechnol., 10 (1999) 230-5.

[21] A. Ahmad, S. Senapati, M.I. Khan,R. Kumar, M. Sastry, Extracellular Biosynthesis of Monodisperse Fold Nanoparticles by a Novel Extremophilic Actinomycete Thermonospora sp. Langmuir, 19 (2003) 3550-3553.

DOI: https://doi.org/10.1021/la026772l

[22] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parischa, P.V. Ajayakumar, M. Alam, R. Kumar, M. Sastry, Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett, 1(2001).

DOI: https://doi.org/10.1021/nl0155274

[23] M. Sastry, A. Ahmad, M.I. Khan, R. Kumar R, Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85 (2003) 162–170.

[24] J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang, H. Wang, Y. Wang, W. Shao,N. He, J. Hong, C. Chen, Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum canphora leaf, Nanotechnology. Nanotechnology, 18(10) (2007).

DOI: https://doi.org/10.1088/0957-4484/18/10/105104

[25] J. Kasthuri, K. Kathiravan, N. Rajendiran, Phyllanthin-assisted biosynthesis of silver and gold nanoparticles: a novel biological approach, J Nanopart Res., 11(5) (2009) 1075-1085.

DOI: https://doi.org/10.1007/s11051-008-9494-9

[26] K. Cho, X. Wang, S. Nie, Z. (Georgia) Chen, Dong M. Shin, Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin Cancer Res 2008; 14(5) (2008).

[27] T. Pellegrino, S. Kudera, T. Liedl, A. Muñoz Javier, L. Manna and W.J. Parak On the Development of Colloidal Nanoparticles towards Multifunctional Structures and their Possible Use for Biological Applications Small 1 (2005) 48-63.

DOI: https://doi.org/10.1002/smll.200400071

[28] S. S Shankar, A. Ahmad, R. Pasrichaa, M. Sastry, Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13 (2003)1822–1826.

DOI: https://doi.org/10.1039/b303808b

[29] S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 17(2005) 566–572.

DOI: https://doi.org/10.1021/cm048292g

[30] J. Huang, Q. Li, D. Sun, Y. Lu, Y. Su, X. Yang Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18 (2007) 105104–105114.

DOI: https://doi.org/10.1088/0957-4484/18/10/105104

[31] S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag and bimetallic Au core–Ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interf Sci 275(2004) 496–502.

DOI: https://doi.org/10.1016/j.jcis.2004.03.003

[32] S.P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, Sastry M Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22 (2006) 577–583.

DOI: https://doi.org/10.1021/bp0501423

[33] B. Ankamwar, M. Chaudhary, M. Sastry, Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Metal-Org Nano- Metal Chem 35: (2005) 19–26.

DOI: https://doi.org/10.1081/sim-200047527

[34] B. Ankamwar, C. Damle, A. Ahmad, M. Sastry Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5: (2005) 1665–1671.

DOI: https://doi.org/10.1166/jnn.2005.184

[35] J. Paul, R.M. Gnanam, R. Jayadeepa, L. Arul, Anti-cancer activity on Graviola, an exciting medicinal plant extract vs various cancer cell lines and a detailed computational study on its potent anti-cancerous leads. Curr Top Med Chem 13(14) (2013).

DOI: https://doi.org/10.2174/15680266113139990117

[36] M. Umadevi, K.P. Sampath Kumar, D. Bhowmik, S. Duraive, Traditionally Used Anticancer Herbs In India. Journal of Medicinal Plants Studies 1(3) (2013) 56-74.

[37] M.I. Akpanabiatu, I.B. Umoh, E.U. Eyong, F.V. Udoh, Influence of Nauclea latifolia Leaf Extracts on Some Hepatic Enzymes of Rats Fed on Coconut Oil and Non-Coconut Oil Meals. Pharmaceutical Biology, 43(2) (2005) 153–157.

DOI: https://doi.org/10.1080/13880200590919492

[38] K.S. Brandenburg, A. Shakeri-Zadeh, G.A. Mansoori, Folate-conjugated gold nanoparticlesfor cancer nanotechnology applications. Nanotech 3(2011) 404 – 407.

[39] T. Gao, H. Hong, J. Sun, Applications of gold nanoparticles in cancer nanotechnology. Nanotechnology, Science and Applications 1 (2008) 17–32.

[40] T. Riddin, M. Gericke, C. Whiteley, Analysis of inter and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17(2006) 3482–3489.

DOI: https://doi.org/10.1088/0957-4484/17/14/021

[41] N. Dur´an, P.D. Marcato, O.L. Alves, G.I.H. De Souza, E. Esposito, Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusariumoxysporum strains. J Nanobiotechnol 3 (2005) 8–14.

[42] A. K. Prusty, Preparation of silver nanoparticle by microorganism and its application in pharmacy. International Journal of Biomedical and Advance Research 02(01) (2011) 32-37.

[43] A.G. Medentsev, V.K. Alimenko, Naphthoquinone metabolites of the fungi. Phytochemistry 479(1998) 35–959.

[44] N. Duran, M.F. S. Teixeira, R. DeConti, E. Esposito, Ecological-friendly pigments from fungi. Crit Rev Food Sci Nutr 42: (2002) 53–66.

[45] A.A. Bell, M.H. Wheeler, J. Liu, R.D. Stipanovic, L.S. Puckhaber, H. Orta, United States Department of Agriculture–Agricultural Research Service studies on polyketide toxins of Fusarium oxysporum f sp vasinfectum: potential targets for disease control. Pest Manag Sci 59: (2003).

DOI: https://doi.org/10.1002/ps.713

[46] Baker, R. A and Tatum, J. H, Novel anthraquinones from stationary cultures of Fusarium oxysporum. J Ferment Bioeng 85 (1998) 359–361.

DOI: https://doi.org/10.1016/s0922-338x(98)80077-9

[47] D.K. Newman, R. Kolter A role for excreted quinones in extracellular electron transfer. Nature 405 (2000) 94–97.

DOI: https://doi.org/10.1038/35011098

[48] S.L. Kela, R.A. Ogunsusi, V.C. Ogbogu, N. Nwude, Screening of some Nigerian plants for molluscicidal activity Rev Elev Med Vet Pays Trop 42, 2 (1989)195-202.

[49] Y.Y. Deeni, H.S.N. Hussain, Screening for antimicrobial activity and for alkaloids of Nauclea latifolia J Ethnopharmacol 35 (1991) 91-96.

DOI: https://doi.org/10.1016/0378-8741(91)90137-3

[50] C. DiGeorgio, M. Lamidi, F. Delmas, Antileishmanial activity of quinovic acid glycosides and cadambine acid isolated from Nauclea diderrichii. Planta Med 72(15) (2006) 1396-1402.

DOI: https://doi.org/10.1055/s-2006-951726

[51] L. Tona, K. Kambu, N. Ngimbi, Antiamoebic and spasmolytic activities of extracts from some antidiarrhoeal traditional preparations used in Kinshasa, Congo Phytomedicine 7(1) (2000) 31-8.

DOI: https://doi.org/10.1016/s0944-7113(00)80019-7

[52] F. Benoit-Vical, A. Valentin, V. Cournac V, In vitro antiplasmodial activity of 2stem and root extracts of Nauclea latifolia S.M. (Rubiaceae). J Ethnopharmacol 61(1998) 173-178.

DOI: https://doi.org/10.1016/s0378-8741(98)00036-1

[53] S. He, Z. Guo, Y. Zhang, S. Zhang, J. Wang, N. Gu Biosynthesis of gold nanoparticles using the bacteria, Rhodopseudomonas capsulate. Materials Letters 61, (2007) 3984–3987.

DOI: https://doi.org/10.1016/j.matlet.2007.01.018

[54] Z.D. He, C.Y. Ma, H.J. Zhang, G.T. Tan, P. Tamez, K. Sydara, S. Bouamanivong, B. Southavong, D.D. Soejarto, J.M. Pezzuto, H.H. Fong, Antimalarial constituents from Nauclea orientalis (L. ) L. Chem. Biodivers., 2(10) (2005) 1378-1386.

DOI: https://doi.org/10.1002/cbdv.200590110

[55] E. S. Onyekwere, E. Obinwa, Phytochemical and Nutrient Evaluation of the Leaves and Fruits of Nauclea Latifolia (Uvuru-ilu). Communications in Applied Sciences 2(1) (2014) 8-24.

[56] A.B. Boham, A.A. Kocipai, Flavonoids and condensed tannins from leaves of Hawaiian Vaccinium vaticulation and V. calycinium, Pacific Science, 48 (1994) 458 – 463.

[57] R.B. Madhavi, V.V. Dighe Synthesis of Gold Nano particles using Putranjiva roxburghii Wall. Leaves Extract. International Journal of drug discovery and herbal research (IJDDHR) 2(1) (2012) 275-278.

[58] L. Rastogi, J. Arunachalam, Green synthesis route for the size controlled synthesis of biocompatible gold nanoparticles using aqueous extract of garlic (Allium sativum). Adv. Mat. Lett., 4(7) (2013) 548-555.

DOI: https://doi.org/10.5185/amlett.2012.11456

[59] A. Kundu , R.K. Layek, A. Kujla, A.K. Nandi A. K, Highly fluorescent graphene oxide-poly (vinyl alcohol) hybrid: an effective material for specific Au3+ ion sensors.  ACS Appl Mater Interface, 4(10) (2012) 5576-82.

DOI: https://doi.org/10.1021/am301467z

[60] B.G. Prevo, S.A. Esakoff, A. Mikhailovsky, J. A. Zasadzinski, Scalable Routes to Gold Nanoshells with Tunable Sizes and Response to Near-Infrared Pulsed-Laser Irradiation. Small 4(8) (2008) 1183–1195.

DOI: https://doi.org/10.1002/smll.200701290

[61] B. Nikoobakht, M.A. El-Sayed, Evidence for bilayer assembly of cationic surfactants on the surface of gold nanorods. Langmuir 17 (2001) 6368–6374.

DOI: https://doi.org/10.1021/la010530o

[62] A. Ahmad, P. Mukherjee, D. Mandal, S. Senapati, M.I. Khan, R. Kumar, M. Sastry, Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124 (2002) 12108-12109.

DOI: https://doi.org/10.1021/ja027296o

[63] S.D. Li, L. Huang, Nanoparticles evading the reticuloendothelial system: role of the supported bilayer. Biochim Biphys Acta. 788(10) (20091) 2259–2266.

DOI: https://doi.org/10.1016/j.bbamem.2009.06.022

[64] R. Arvizo, R. Bhattacharya, P. Mukherjee, Gold nanoparticles: opportunities and challenges in nanomedicine.  Expert Opinion on Drug Delivery 7(6) (2010) 753-763.

DOI: https://doi.org/10.1517/17425241003777010

[65] M. Homberger, U. Simon, On the application potential of gold nanoparticles in nanoelectronics and biomedicine. Phil. Trans. R. Soc. A, 368 (2010) 1405–1453.

[66] S. Krishnan, P. Diagaradjane, S.H. Cho, Nanoparticle-mediated thermal therapy: Evolving strategies for prostate cancer therapy. Int. J. Hyperthermia, 26(8) (2010) 775–789.

DOI: https://doi.org/10.3109/02656736.2010.485593

[67] V. Voliani, G. Signor, R. Nifosí, F. Ricci, S. Luin, F. Beltram, Smart Delivery and Controlled Drug Release with Gold Nanoparticles: New Frontiers in Nanomedicine. Recent Patents on Nanomedicine, 2(1) (2012) 34-44.

DOI: https://doi.org/10.2174/1877913111202010034

[68] G.S. Terentyuk, G. N. Maslyakova, N.G. Khlebtsov, V.V. Tuchin, I. L. Maksimova, B. N. Khlebtsov, L. V. Suleymanova Laser-induced tissue hyperthermia mediated by gold nanoparticles: towards cancer phototherapy, J. Biomed. Opt. 14(2), (2009).

DOI: https://doi.org/10.1117/1.3122371

[69] J. Conde, G. Doria, P. Baptista, Noble Metal Nanoparticles Applications in Cancer. Journal of Drug Delivery. 2012 (2012) Article ID 751075, 12 pages.

DOI: https://doi.org/10.1155/2012/751075

[70] H. Chen, L. Shao, T. Ming Understanding the photothermal conversion efficiency of gold nanocrystals, Small, 6(20) (2010) 2272–2280.

DOI: https://doi.org/10.1002/smll.201001109

[71] E. S. Day, J. G. Morton, J. L. West, Nanoparticles for thermal cancer therapy, Journal of Biomechanical Engineering, 131(7) (2009) Article ID 740011, 12pages.

[72] B. Tang, J.L. Tao, S.P. Xu, Using hydroxyl carboxylate to synthesize gold nanoparticles in heating and photochemical reactions and their application in textile colouration. Chemical Engineering Journal, 172 (1) (2011) 601-607.

DOI: https://doi.org/10.1016/j.cej.2011.06.038

[73] O. Marom, F. Nakhoul, U. Tisch, A. Shiban, Z. Abassi, H. Haick, Gold nanoparticle sensors for detecting chronic kidney disease and disease progression. Nanomedicine, 7(5) (2012). 639-650.

DOI: https://doi.org/10.2217/nnm.11.135

[74] E. J. Wilhelm, B.T. Neltner, J.M. Jacobson, Nanoparticle-based microelectromechanical systems fabricated on plastic. Appl. Phys. Lett. 85 (2004) 6424.

DOI: https://doi.org/10.1063/1.1842356

[75] T.K. Sau, C.J. Murphy, Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 20 (2004) 6414–6420.

DOI: https://doi.org/10.1021/la049463z