Review of High Temperature Ceramics for Aerospace Applications

Abstract:

Article Preview

This paper presents a review of high temperature ceramics research for aerospace applications. Following a brief historical perspective, the paper reviews the effort to toughen ceramics for high temperature structural applications. These include: efforts to toughen zirconia-based ceramics, aluminum oxide, silicon carbide, silicon nitride, molybdenum disilicide and zirconium diborides and carbon-based composites. The development of thermal protection systems is also reviewed within the context of thermal barrier coatings (TBCs) and thermal protection systems for space vehicles. The paper concludes with a final section in which the implications of the results are then discussed for the thermostructural applications of ceramics in aerospace structures.

Info:

Periodical:

Edited by:

Prof. Wole Soboyejo, Dr. Shola Odusunya, Dr. Zebaze Kana, Dr. Nicolas Anuku, Dr. Karen Malatesta and Dr. Mohammed Dauda

Pages:

385-407

DOI:

10.4028/www.scientific.net/AMR.1132.385

Citation:

W. O. Soboyejo et al., "Review of High Temperature Ceramics for Aerospace Applications", Advanced Materials Research, Vol. 1132, pp. 385-407, 2016

Online since:

December 2015

Export:

Price:

$35.00

* - Corresponding Author

[1] A. G. Evans, Ceramics and Ceramic Composites as High-Temperature Structural Materials: Challenges and Opportunities, Philos. Trans. R. Soc. London, Ser. A, 315, pp.511-525, (1995).

[2] A. G. Evans and A. H. Heuer, Review—Transformation Toughening in Ceramics: Martensitic Transformations in Crack-Tip Stress Fields, J. Am. Ceram. Soc., 63 p.241– 48, (1980).

DOI: 10.1002/chin.198038328

[3] M. Rühle, A.G. Evans, R.M. McMeeking and P.G. Charalambides and J. W. Hutchinson, Micro-crack Toughening In Alumina/Zirconia, Acta Metall. Vol. 35. No 11 pp.2701-2710, (1987).

DOI: 10.1016/0001-6160(87)90269-0

[4] M. Rühle, N. Claussen and A. H. Heuer, Transformation and Microcrack Toughening as Complementary Processes in Zr02-Toughened AI2O3, J. Am. Ceram. Soc, 69, pp.195-197, (1986).

[5] S. Fu¨nfschilling, T. Fett, M.J. Hoffmann, R. Oberacker, T. Schwind, J. Wippler,T. Bo¨hlke, H. O¨zcoban, G.A. Schneider, P.F. Becher, J.J. Kruzic Mechanisms of toughening in silicon nitrides: The roles of crack bridging and microstructure, Acta Materialia 59, p.3978–3989, (2011).

DOI: 10.1016/j.actamat.2011.03.023

[6] A. Rezaire, Fahrenholtz, W. G., & G. E. Hilmas, Evolution of structure zirconium diboride–silicon carbide in air up to 1500°C, Journal of the European Ceramic Society, Vol. 27, No. 6, pp.2495-2501, (2007).

DOI: 10.1016/j.jeurceramsoc.2006.10.012

[7] Monteverde, F., Beneficial effects of an ultra-fine α-SiC incorporation on the sinterability and mechanical properties of ZrB2, Applied Physics A: Materials Science & Processing, Vol. 82, No. 2, pp.329-337, (2006).

DOI: 10.1007/s00339-005-3327-9

[8] Heuer, A. H. and V. L. K. Lou, Volatility diagrams for silica, silicon nitride, and silicon carbide and their application to high temperature decomposition and oxidation, Journal of Am. Ceram. Soc, Vol. 73, No. 10, p.2785–3128, (1990).

DOI: 10.1111/j.1151-2916.1990.tb06677.x

[9] Wole Soboyejo, Douglas Brooks and Long-Ching Chen, Transformation Toughening and Fracture Behavior of Molybdenum Disilicide Composites Reinforced with Partially Stabilized Zirconia, Journal of Am. Ceram. Soc, Vol. 78, No. 6, pp.1481-88, (1995).

DOI: 10.1111/j.1151-2916.1995.tb08841.x

[10] T. C. Lu, A. G. Evans, R. J. Hecht, and R. Mehrabian, Toughening of MoSi2, with a Ductile (Niobium) Reinforcement, Acta Metall. Muter., 39, (1991).

DOI: 10.1016/0956-7151(91)90154-s

[11] E. Ryshkewitch, Oxide Ceramics: Physical Chemistry and Technology, p.350–396. Academic Press, New York, (1960).

[12] A. H. Heuer, Transformation Toughening in ZrO2 -Containing Ceramics, Journal of Am. Ceram. Soc., Vol. 70, No. 10, p.689 –698, (1987).

[13] F. Monteverde, S. Guicciardi and A. Bellosi , Advances in microstructure and mechanical properties of zirconium diboride based ceramics, Material Science and Engineering, Vol. 346, No. 1-2, pp.310-319, (2003).

DOI: 10.1016/s0921-5093(02)00520-8

[14] A. Chamberlain, W. Fahrenholtz and G. Hilmas, High-strength zirconium diboride based ceramics, Journal of Am. Ceram. Soc, Vol. 87, No. 6, 1170-1172, (2004).

DOI: 10.1111/j.1551-2916.2004.01170.x

[15] M. M. Opeka, I. G. Talmy, and J. A. Zaykoski, Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: theoretical considerations and historical experience, Journal of Materials Science, Vol. 39, No. 19, p.5887–5904, (2004).

DOI: 10.1023/b:jmsc.0000041686.21788.77

[16] T. A. Parthasarathy, R. A. Rapp, M. Opeka and R. J. Kerans: Effects of phase change and oxygen permeability in oxide scales on oxidation kinetics of ZrB2 and HfB2, J. Am. Ceram. Soc. , Vol. 92, No. 5, p.1079–1086, (2009).

DOI: 10.1111/j.1551-2916.2009.03031.x

[17] T. Chang, C. Mercer, M. Walter, and W.O. Soboyejo, An investigation of the effects of Isothermal Exposure on micro-structural evolution and oxidation in a thermal barrier coating, Key Engineering Materials, Vol. 197, pp.185-198, (2001).

DOI: 10.4028/www.scientific.net/kem.197.185

[18] D.R. Mumm and A.G. Evans, Mechanisms controlling the performance and durability of thermal barrier coatings, Key Engineering Materials, Vol. 197, pp.199-230, (2001).

DOI: 10.4028/www.scientific.net/kem.197.199

[19] D. J. Rasky, J. Salute, J. P. Kolodzie and J. Bull, The NASA Sharp Flight Experiment, Proceedings of the 3rd European Workshop on Thermal Protection Systems, Noordwijk, The Netherlands, 25-27 March (1998).

[20] T. Reimer and T. Laux, Thermal and Mechanical Design of the EXPERT C/C-SiC Nose, 5th European Workshop on Thermal Protection Systems and Hot Structures, Noordwijk, The Netherlands, 17-19 May (2006).

[21] C. A. Snyder, Thrust Augmentation Options for the Beta II Two-stage-to-Orbit Vehicles, Technical report submitted to AIAA Aircraft Design-system Operations meeting, Monterey, California, August 11-13, (1993).

DOI: 10.2514/6.1993-4014

[22] J. L. Hall, Columbia and Challenger: Organizational failure at NASA,; Space Policy 19, pp.239-247, (2003).

DOI: 10.1016/j.spacepol.2003.08.013

[23] R. A. Miller, Thermal Barrier Coatings for Aircraft Engines – History and Directions, Thermal Barrier Coating Workshop, NASA CP 3312, p.17, (1995).

[24] T. S. Srivatsan, M. Strangwood and W. O. Soboyejo, Fracture Behavior of a Gamma Titanium Aluminide Intermetallics, J. of Materials Science, Vol. 31, pp.2193-2198, (1996).

DOI: 10.1007/bf00356645

[25] Tolpygo V.K., Clarke D.R., Wrinkling of α-alumina films grown by thermal oxidation-I. Quantitative studies on single crystals of Fe-Cr-Al alloy, Acta Materialia, Vol. 46, No. 14, pp.5153-5166, (1998).

DOI: 10.1016/s1359-6454(98)00133-5

[26] Tolpygo V.K., Clarke D.R., Competition Between Stress Generation and Relaxation During Oxidation of a Fe-Cr-Al-Y Alloy, Oxidation of Metals, Vol. 49, No 1-2, pp.187-211, (1998).

[27] D. R. Mumm and A. G. Evans, On the role of imperfections in the failure of a thermal barrier coating made by electron beam deposition, Acta Materialia, Vol. 48, No. 8, p.1815–1827, (2000).

DOI: 10.1016/s1359-6454(99)00473-5

[28] W. O. Soboyejo and K. Lou, Grain Boundary Segregation and Intergranular Fracture in a Gamma-Based Titanium Aluminide Intermetallic, Scripta Metallurgica et Materialia, Vol. 29, pp.1335-1339, (1993).

DOI: 10.1016/0956-716x(93)90134-e

[29] S. Bose and J. DeMasi-Marci and D. K. Marcin, Thermal Barrier Coating Experience in Gas Turbine Engines at Pratt & Whitney, Thermal Barrier Coating Workshop, NASA CP 3312, p.63, (1995).

DOI: 10.1007/bf02646318

[30] N. M. Yanar, M. J. Stiger, M. Maris-Sida, F. S. Pettit and G. H. Meier, The effects of high temperature exposure on the Durability of Thermal Barrier Coatings, Key Engineering Materials Vol. 197, pp.145-164, (2001).

DOI: 10.4028/www.scientific.net/kem.197.145

[31] W. O. Soboyejo, P. Mensah, R. Diwan, J. Crowe and S. Akwaboa, High Temperature Oxidation Interfacial Growth Kinetics in YSZ Thermal Barrier Coatings With Bond Coatings of NiCoCrAlY With 0. 25% Hf, Materials Science and Engineering A, Vol. 528, pp.2223-2230, (2011).

DOI: 10.1016/j.msea.2010.11.066

[32] R. A Handoko, J. L. Beuth, G.H. Meier, F.S. Pettit and M.J. Stiger, Mechanisms for Interfacial Toughness Loss in Thermal Barrier Coating Systems, Key Engineering Materials, Vol. 197, pp.165-184, (2001).

DOI: 10.4028/www.scientific.net/kem.197.165

[33] A.M. Karlsson , T. Xu and A.G. Evans, The effect of the thermal barrier coating on the displacement instability in thermal barrier systems, Acta Materialia 50, p.1211–1218, (2002).

DOI: 10.1016/s1359-6454(01)00422-0

[34] J. F. Knott, Mechanics of Fracture, R. M. Latanision and J. Pickens (eds. ), Atomistics of Fracture, Plenum, p.209, (1983).

[35] J. F. Knott, in R. M. Latanision and R. H. Jones (eds. ), Chemistry and Physics of Fracture, Martinus Nijhoff, Dordrecht, p.44, (1987).

[36] M. Huang, Z. Suo, Q. Ma and H. Fujimoto, Thin film cracking and ratcheting caused by temperature cycling, Journal of Materials Research, Vol. 15, p.1239–1242, (2000).

DOI: 10.1557/jmr.2000.0177

[37] W. O. Soboyejo and T.S. Srivatsan, Advanced Structural Materials: Properties, Design Optimization, and Applications, CRC Press, Boca Ration, FL, (2006).

[38] J. Antonenko, M. Muller, The 4th European Workshop on Thermal Protection Systems and Hot Structures, Noordwijk, The Netherlands, 26-29 November 2002, Palermo, Italy, ESA Publications Division, ESTEC, Noordwijk, The Netherlands.

[39] M. Dogigli, D. Sabath, J. -P. Kemper CMC Components for Future RLV,. The 4th European Workshop on Hot Structures and Thermal Protection Systems for Space Vehicles, ESA, SP-521, 26-29 November 2002, Palermo, Italy.

[40] W. Fischer, Metallic Thermal Protection Systems for future RLV's - Concept Studies and Material Investigations, SAE Technical Paper, (2002).

DOI: 10.4271/2002-01-2548

[41] T. Pichon, R. Barreteau, P. Soyris, A. Foucault, J.M. Parenteau, Y. Prel, S. Guedron, CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests, Acta Astronautica, Vol. 65, p.165–176, (2009).

DOI: 10.1016/j.actaastro.2009.01.035

[42] Y. Caogen, L. Hongjun, J. Zhonghua, J. Xinchao, L. Yan, L. Haigang, A study on metallic thermal protection system panel for Reusable Launch Vehicle, Acta Astronautica, Vol. 63, p.280–284, (2008).

DOI: 10.1016/j.actaastro.2007.12.059

[43] F. Leleu, P. Watillon, J. Moulin, A. Lacombe, and P. Soyris, The thermo-mechanical architecture and TPS configuration of the pre-X vehicle, Acta Astronautica, Vol. 56, p.453–464, (2005).

DOI: 10.1016/j.actaastro.2004.05.073

[44] T. Pichon, R. Barreteau, P. Soyris, A. Foucault, J.M. Parenteau, Y. Prel, S. Guedron, CMC thermal protection system for future reusable launch vehicles: Generic shingle technological maturation and tests, Acta Astronautica, Vol. 65, p.165–176, (2009).

DOI: 10.1016/j.actaastro.2009.01.035

[45] A. S. Filatyev, V. Buzuluk, O. Yanova, N. Ryabukha, A. Petrov, Advanced aviation technology for reusable launch vehicle improvement, Acta Astronautica, Vol. 100, p.11–21, (2014).

DOI: 10.1016/j.actaastro.2014.03.007

[46] S. Safi, A. Kazemzadeh, MCMB–SiC composites; new class high-temperature structural materials for aerospace applications, Ceramics International, Vol. 39, p.81–86, (2013).

DOI: 10.1016/j.ceramint.2012.05.098

[47] A.G. Evans, High toughness ceramics, Materials Science and Engineering: A, Volumes 105–106, Part 1, p.65–75, (1988).

[48] M. Rühle, A.G. Evans, High toughness ceramics and ceramic composites, Progress in Materials Science, Vol. 33, p.85–167, (1989).

DOI: 10.1016/0079-6425(89)90005-4

[49] A. E. Pasto, Synthesis/Processing of Silicon Nitride Ceramics, Comprehensive Hard Materials, Vol. 2, p.73–88, (2014).

DOI: 10.1016/b978-0-08-096527-7.00022-2

[50] E. Sánchez-González, P. Miranda, F. Guiberteau and A. Pajares, Effect of temperature on the pre-creep mechanical properties of silicon nitride, Journal of the European Ceramic Society, Vol. 29, p.2635–2641, (2009).

DOI: 10.1016/j.jeurceramsoc.2009.03.011

[51] M. Rühle, A.G. Evans, High toughness ceramics and ceramic composites, Progress in Materials Science, Vol. 33, p.85–167, (1989).

DOI: 10.1016/0079-6425(89)90005-4

[52] M. Rühle, Microcrack and transformation toughening of zirconia-containing alumina, Materials Science and Engineering: A, Vol. 105–106, p.77–82, (1988).

DOI: 10.1016/0025-5416(88)90482-x

[53] M. Rühle, A. G. Evans, R. M. McMeeking, P. G. Charalambides, J. W. Hutchinson, Microcrack toughening in alumina/zirconia, Acta Metallurgica Vol. 35, p.2701–2710, (1987).

DOI: 10.1016/0001-6160(87)90269-0

[54] R. C. Garvie, R. H. Hannink and R. T. Pascoe, Ceramic steel, Nature 258, pp.703-704, (1975).

DOI: 10.1038/258703a0

[55] D. R. Bloyer, K. T. Venkateswara Rao and R.O. Ritchie, Resistance-curve toughening in ductile/brittle layered structures: behavior in Nb/Nb3 Al laminates, Materials Science and Engineering, (1996).

DOI: 10.1016/0921-5093(96)10391-9

[56] D. Ding, Processing, properties and applications of ceramic matrix composites, SiC/SiC: an overview, Advances in Ceramic Matrix Composites, p.9–26, (2014).

DOI: 10.1533/9780857098825.1.9

[57] I.M. Low, Advances in ceramic matrix composites: an introduction, Advances in Ceramic Matrix Composites, p.1–6, (2014).

DOI: 10.1533/9780857098825.1

[58] S. P. Rawal, Multifunctional Composite Materials and Structures, Comprehensive Composite Materials, Vol. 6, pp.67-86, (2000).

DOI: 10.1016/b0-08-042993-9/00186-8

[59] R. F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures, Composite Structures, Vol. 92, p.2793–2810, (2010).

DOI: 10.1016/j.compstruct.2010.05.003

[60] C.G. Papakonstantinou, P. Balaguru, R.E. Lyon, Comparative study of high temperature composites, Composites Part B: Engineering, Vol. 32, p.637–649, (2001).

DOI: 10.1016/s1359-8368(01)00042-7

[61] K. H. Pfeiffer, K. Peetz, 53rd International Astronautical Congress, IAC -02 1. 3. 02, Houston, Texas, USA, IAC-02-1. 6. b. 01, 10-19 October (2002).

[62] R. O. Ritchie, Mechanisms of Fatigue Crack Propagation in Metals, Ceramics and Composites: Role of Crack-Tip Shielding, Materials Science and Engineering, Vol. 103, pp.15-28, (1988).

DOI: 10.1016/0025-5416(88)90547-2

[63] R. O. Ritchie, Mechanisms of fatigue-crack propagation in ductile and brittle solids, International Journal of Fracture, Vol. 100, No. 1, pp.55-83, (1999).

[64] R.K. Nalla, J.S. Stölken, J.H. Kinney and R.O. Ritchie, Fracture in human cortical bone: local fracture criteria and toughening mechanisms, Journal of Biomechanics Vol. 38, p.1517–1525, (2005).

DOI: 10.1016/j.jbiomech.2004.07.010

[65] W. O. Soboyejo, Mechanical Properties of Engineering Materials, Marcel Dekker, New York, NY, p.1 – 583, (2002).

[66] C. H. Nguyen, K. Chandrashekhara and V. Birman, Multifunctional thermal coatings in aerospace sandwich panels, Mechanics Research Communications, Vol. 39, pp.35-43, (2012).

DOI: 10.1016/j.mechrescom.2011.10.003

[65] W. O. Soboyejo, Mechanical Properties of Engineering Materials, Marcel Dekker, New York, NY, p.1 – 583, (2002).

[67] Yirong Lin, Henry A. Sodano, Concept and model of a piezoelectric structural fiber for multifunctional composites, Composites Science and Technology, Vol. 68, p.1911–1918, (2008).

DOI: 10.1016/j.compscitech.2007.12.017

[68] Jinlian Hu, Yong Zhu, Huahua Huang, Jing Lu, Recent advances in shape–memory polymers: Structure, mechanism, functionality, modeling and applications, Progress in Polymer Science Vol. 37, p.1720–1763, (2012).

DOI: 10.1016/j.progpolymsci.2012.06.001

[69] Haibao Lu, Wei Min Huang, Jisong Leng, A phenomenoloical model for simulating the chemo-responsive shape memory effect in polymers undergoing a premeation transition, Smart materials and Structures, Vol. 23, (2014).

DOI: 10.1088/0964-1726/23/4/045038

[70] Haibou Lu, Yanju Liu, Jihua Gou, Jinsong Leng, Shanju Du, Electrical properties and shape memory behavior of self-assembled carbon nanofiber nanopaper incorporated with shape memory polymer, Smart materials and Structures, Vol. 19, (2010).

DOI: 10.1088/0964-1726/19/7/075021

[71] Haibou Lu, Fei Lang, Yongtao Yao, Jihua Gou, David Hui, Self assembled multi-layered carbon nanopaper for significantly improving electrical actuation of shape memory polymer nanocomposite, Composite: Part B, Vol. 59, pp.191-195, (2014).

DOI: 10.1016/j.compositesb.2013.12.009

[72] Ronald F. Gibson, A review of recent research on mechanics of multifunctional composite materials and structures, Composite Structures, Vol. 92, p.2793–2810, (2010).

DOI: 10.1016/j.compstruct.2010.05.003

[73] Ahmed K. Noor, Samuel L. Venneri, Donald B. Paul, Mark A. Hopkins, Structures technology for future aerospace systems, Computers & Structures, Vol. 74, p.507–519, (2000).

DOI: 10.1016/s0045-7949(99)00067-x

[74] Bliss T. K., Iwasaki T., Bart-Smart H., CPG control of a tensegrity morphing structure for biomimetic applications, Advances in Science and Technolgy, Vol. 58, pp.137-142, (2008).

DOI: 10.4028/www.scientific.net/ast.58.137

[75] Moored K. W., Bart-Smith H., The analysis of tensegrity structures for the design of a morphing wing, Journal of Applied Mechanics, Vol. 74, pp.668-676, (2007).

DOI: 10.1115/1.2424718

[76] Haydn N. G. Wadley, Cellular Metals Manufacturing, Advanced Engineering Materials, No. 10, (2002).

[77] Dana M. Elzey, Aarash Y. N. Sofla, Haydn N. G. Wadley, A shape memory-based multifunctional structural actuator panel, International Journal of Solids and Structures, Vol. 42, p.1943–1955, (2005).

DOI: 10.1016/j.ijsolstr.2004.05.034

[78] W. AKI, S. Poh, A. Baz, "Wireless and distributed sensing of the shape of morphing structures, Sensors and Actuators A: Physical, Vol. 140, pp.94-102, (2007).

DOI: 10.1016/j.sna.2007.06.026

[79] Christopher N. Bowmah, Smart shape changing and shape morphing polymeric materials, Polymer, Vol. 55, pp.5847-5848, (2014).

DOI: 10.1016/j.polymer.2014.09.058

[80] A. Y. N Sofla, S. A. Meguid, K. T. Tan, W. K. Yeo, "Shape morphing of aircraft wing: Status and challenges, Materials & Design, Vol. 31, pp.1284-1292, (2010).

DOI: 10.1016/j.matdes.2009.09.011

[81] Wang Y. G, Wang Y. R, Hosono E, Wang K. X, Zhou H. S, The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method, Angew. Chem. Int. Ed. 47: pp.7461-7465, (2008).

DOI: 10.1002/anie.200802539

[82] Han-Jung Kim, Sang Eon Lee, Jihye Lee, Joo-Yun Jung, Eung-Sug Lee, Jun-Hyuk Choi, Jun-Ho Jung, Minsub Oh, Seungmin Hyun, Dae-Geun Choi, Gold-coated silicon nanowire–graphene core–shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries, Physica E: Low-dimensional Systems and Nanostructures, Vol. 61, pp.204-209, (2014).

DOI: 10.1016/j.physe.2014.03.030

[83] Q.Q. Xiong, Y. Lu, X. L. Wang, C. D. Gu, Y. Q. Qiao, J. P. Tu, Improved electrochemical performance of porous Fe3O4/carbon core/shell nanorods as an anode for lithium-ion batteries, Journal of Alloys and Compounds, Vol. 526, pp.219-225, (2012).

DOI: 10.1016/j.jallcom.2012.05.034

[84] Zhang X., Chung M., Kim H., Wang C. -W., and Sastry, A. M., Part IV: Mechanics of Battery Cells and Materials, Handbook of Battey Materials, 2nd edition, C. Daniel and J.O. Besenhard, Eds., pp.877-904, (2011).

[85] Park M., Zhang X., Chung M., Less G.B., and Sastry, A. M., A review of conduction phenomena in Li-ion batteries, Journal of Power Sources, Vol. 195, pp.7904-7929, (2010).

DOI: 10.1016/j.jpowsour.2010.06.060

[86] Du W., Gupta A., Zhang X., Sastry, A. M., Shyy, W., Effect of cycling rate, particle size and transport properties on lithium-ion cathode performance, International Journal of Heat and Mass Transfer, Vol. 53, pp.3552-3561, (2010).

DOI: 10.1016/j.ijheatmasstransfer.2010.04.017

[87] Chen Y. H., Bakrania S. D., Wooldridge M. S., and Sastry A. M., Image analysis and computer simulation of nanoparticle clusturing in combustion systems, " Aerosol Science and Technology, Vol. 44, pp.83-95, (2010).

DOI: 10.1080/02786820903390380

[88] R. J. Lancaster, W. J. Harrison, G. Norton, An analysis of small punch creep behaviour in the γ titanium aluminide Ti-45Al-2Mn-2Nb, Materials Science and Engineering: A, (2014).

DOI: 10.1016/j.msea.2014.12.045

[89] Ali El-Chaikh, Thomas K. Heckel, Hans-J. Christ, Thermomechanical fatigue of titanium aluminides, International Journal of Fatigue, Vol. 53, pp.26-32, (2013).

DOI: 10.1016/j.ijfatigue.2011.08.005

[90] Z. Abdallah, M.T. Whittaker, M.R. Bache, High temperature creep behaviour in the γ titanium aluminide Ti–45Al–2Mn–2Nb, Intermetallics, Vol. 38, pp.55-62, (2013).

DOI: 10.1016/j.intermet.2013.02.003

[91] Raluca Pflumm, Alexander Donchev, Svea Mayer, Helmut Clemens, Michael Schütze, High-temperature oxidation behavior of multi-phase Mo-containing γ-TiAl-based alloys, Intermetallics Vol. 53, pp.45-55, (2014).

DOI: 10.1016/j.intermet.2014.04.010

[92] Sawyer J. W., Hodge J., and Moore B., Aerothermal Test of Metallic TPS for X-33 Reusable Launch Vehicle, NASA Technical report, NASA Langley Research Center, USA, (1998).

[93] M. Dogigli, D. Sabath, J. -P. Kemper CMC Components for Future RLV,. The 4th European Workshop on Hot Structures and Thermal Protection Systems for Space Vehicles, ESA, SP-521, 26-29 November 2002, Palermo, Italy.

In order to see related information, you need to Login.