Single Cell Deformation and Detachment Models of Shear Assay Measurements

Abstract:

Article Preview

This paper presents concepts for the modeling of cell deformation and cell detachment from biocompatible biomedical materials. A combination of fluid mechanics and fracture mechanics concepts is used to model the detachment of cells under shear assay conditions. The analytical and computational models are validated by shear assay experiments in which human-osteo-sarcoma (HOS) cell are detached from surfaces that are relevant to bio-micro-electro-mechanical systems (BioMEMS), bio-microelectronics and orthopaedic/dental implants. The experiments revealed that cell detachment occurs from patches in which of α/β integrins are separated from the extracellular matrix that is left on the substrate. The stress/strain distribution and energy release rates associated with the observed detachments are also computed using elastic cell deformation, fluid/structure interactions and linear fracture mechanics (LEFM) model. The simulations reveal show that cancer cells generally experience higher levels of deformation than normal cells. The simulations also revealed that the cell-extracellular matrix interface was prone to cell detachment (interfacial failure), as observed in the shear assay experiments. The critical energy release rates for normal cell detachment were also found to be greater than those required for the detachment of cancer cells. The implications of the results are discussed for the design of biomedical implants and their interfaces.

Info:

Periodical:

Edited by:

Prof. Wole Soboyejo, Dr. Shola Odusunya, Dr. Zebaze Kana, Dr. Nicolas Anuku, Dr. Karen Malatesta and Dr. Mohammed Dauda

Pages:

51-71

Citation:

C.J. Ani et al., "Single Cell Deformation and Detachment Models of Shear Assay Measurements", Advanced Materials Research, Vol. 1132, pp. 51-71, 2016

Online since:

December 2015

Export:

Price:

$41.00

[1] B. Alberts, A. Ohnson, J. Lewis, M. Raff, K. Roberts, P. Walter. Molecular Biology of the Cell, Garland Science, New York, (2002).

[2] B. D. Ratner. An Introduction to Materials in Medicine. Biomaterials Science Academic Press, Boston, 2004; 851.

[3] D. J. Maxwell, B. C. Hicks, S. Parsons, S. E. S. Elbert. Development of rationally designed affinity-based drug delivery systems. Acta Biomaterialia 2005; 1: 101–113.

DOI: https://doi.org/10.1016/j.actbio.2004.09.002

[4] K. Elkharraz, N. Faisant, C. Guse, F. Siepmann, B. A. Yegin, J. M. Oger, R. Gust, A. Goepferich, J. P. Benoit, J. Siepmann. Paclitaxel-loaded microparticles and implants for the treatment of brain cancer: Preparation and physicochemical characterization. International Journal of Pharmaceutics 2006; 314: 127-136.

DOI: https://doi.org/10.1016/j.ijpharm.2005.07.028

[5] J. Y . Wong, J. D. Bronzing, Biomedical Engineering Fundamentals, (2006).

[6] E. A. G. Peeters, C. W. J. Oomens, C. V. C. Bouten, D. L Bader, F. P. T. Baaijens. Mechanical and failure properties of single attached cells under compression. Journal of Biomechanics 2005; 38: 1685-1693.

DOI: https://doi.org/10.1016/j.jbiomech.2004.07.018

[7] S. E. Cross, Y. S. Jin, J. Rao, J. K. Gimzewski. Nanomechanical analysis of cells from cancer patients. Nature Nanotechnology 2007; 2: 780–783.

DOI: https://doi.org/10.1038/nnano.2007.388

[8] T. G. Kuznetsova, M. N. Starodubtseva, N. I. Yegorenkov. Atomic force microscopy probing of cell elasticity. Micron 2007; 38: 824-833.

DOI: https://doi.org/10.1016/j.micron.2007.06.011

[9] M. Lekka, P. Laidler, D. Gil, J. Lekki, Z. Stachura. Elasticity of normal and cancerous human bladder cells studied by scanning force microscopy European Biophysics Journal 1999; 28: 312-316.

DOI: https://doi.org/10.1007/s002490050213

[10] G. Y. H. Lee, C. T. Lim. Biomechanics approaches to studying human diseases. Trends in Biotechnology 2007; 25: 111–118.

DOI: https://doi.org/10.1016/j.tibtech.2007.01.005

[11] J. R. Williamson, R. A. Gardner, C. W. Boylan, G. L. Carroll, K. Chang, J. S. Marvel, B. Gonen, C. Kilo, R. Tran-Son-Tay, S. P. Sutera. Microrheologic investigation of erythrocyte deformability in diabetes mellitus. Blood 1985; 65: 283-288.

[12] A. Fuhrmann , J. R. Staunton, V. Nandakumar, N. Banyai , P. C. W. Davies. AFM stiffness nanotomography of normal, metaplastic and dysplastic human esophageal cells Physical Biology 2011; 8: 015007.

DOI: https://doi.org/10.1016/j.bpj.2010.12.1257

[13] W. Xu., R. Mezencev, B. Kim, L. Wang, J. McDonald, T. Sulchek. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS ONE 2012; 7: e0046609.

DOI: https://doi.org/10.1371/journal.pone.0046609

[14] F. Li, S. D. Redick, H. P. Erickson, and V. T. Moy. Force Measurements of the α5β1 Integrin–Fibronectin Interaction. Biophysical Journal 2003; 84: 1252–1262.

DOI: https://doi.org/10.1016/s0006-3495(03)74940-6

[15] Y. Wan, J. Yang, J. Yang, J. Bei, S. Wang. Cell adhesion on gaseous plasma modified poly-(L- lactide) surface under shear stress field. Biomaterials 2003; 24: 3757–3764.

DOI: https://doi.org/10.1016/s0142-9612(03)00251-5

[16] E. A. Evans. Minimum energy analysis of membrane deformation applied to pipette aspiration and surface adhesion of red blood cells. Biophysics Journal 1980; 30: 265-284.

DOI: https://doi.org/10.1016/s0006-3495(80)85093-4

[17] A. Tozeren, K. L. Sung, L. A. Sung, M. L. Dustin, P. Y. Chan, T. A. Springer, S. Chien. Micromanipulation of Adhesion of a Jurkat Cell to a Planar Bilayer Membrane Containing Lymphocyte Function-associated Antigen 3 Molecules. Journal of Cell Biology 1992; 116: 997-1006.

DOI: https://doi.org/10.1083/jcb.116.4.997

[18] V. T. Moy, Y. Jiao, T. Hillmann, H. Lehmann, T. Sano. Adhesion energy of receptor-mediated interaction measured by elastic deformation. Biophysics Journal 1999; 76: 1632–1638.

DOI: https://doi.org/10.1016/s0006-3495(99)77322-4

[19] K. Prechtel, A. R. Bausch, V. Marchi-Artzner, M. Kantlehner, H. Kessler, R. Merkel. Dynamic force spectroscopy to probe adhesion strength of living cells. Physics Review Letter 2002; 89: 1- 4.

DOI: https://doi.org/10.1103/physrevlett.89.028101

[20] C. Dong, X. X. Lei. Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability. Journal of Biomechanics 2000; 33: 35-43.

DOI: https://doi.org/10.1016/s0021-9290(99)00174-8

[21] R. A. Bly, Y. Cao, W. A. Moore, W. O. Soboyejo. Investigation of the effects of alkane phosphonic acid/RGD coatings on cell spreading and the interfacial strength between human osteosarcoma cells and Ti–6Al–4V. Materials Science and Engineering C 2007; 27: 83-89.

DOI: https://doi.org/10.1016/j.msec.2006.02.005

[22] G. Fu, C. Milburn, S. Mwenifumbo, Y. Cao, G.M. Oparinde , M.O. Adeoye , C. Therialt , A.C. Beye, W.O. Soboyejo. Shear Assay Measurements of Cell Adhesion on Biomaterials Surfaces. Materials Science and Engineering: C 29 (4): 1293–1301.

DOI: https://doi.org/10.1016/j.msec.2008.10.026

[23] L. Chu, L.A. Tempelman, C. Miller, D.A. Hammer. Centrifugation assay of IgE-mediated cell adhesion to antigen-coated gels. Aiche Journal 1994; 40: 692–703.

DOI: https://doi.org/10.1002/aic.690400412

[24] A. Prakobphol, C.A. Burdsal, S.J. Fisher. Quantifying the strength of bacterial adhesive interactions with salivary glycoproteins. Journal of Dental Research 1995; 74: 1212–1218.

DOI: https://doi.org/10.1177/00220345950740051101

[25] K. J. Pratt, B. E. Jarrell, S. K. Williams, R. A. Carabasi, M. A. Rupnick, F. A. Hubbard. Kinetics of endothelial cell-surface attachment forces. Journal of Vascular Surgery 1988; 7: 591–599.

DOI: https://doi.org/10.1016/0741-5214(88)90366-7

[26] D. F. Tees, H. L. Goldsmith, Kinetics and locus of failure of receptor-ligand mediated adhesion between latex spheres: I. Protein-carbohydrate bond. Biophysical Journal 1996; 71: 1102–1114.

DOI: https://doi.org/10.1016/s0006-3495(96)79312-8

[27] C. Dong, J. Cao, E. J. Struble, H. H. Lipowsky. Mechanics of Leukocyte Deformation and Adhesion to Endothelium in Shear Flow. Annals Biomedical Engineering 1999; 27: 298-312.

DOI: https://doi.org/10.1114/1.143

[28] G. A. Truskey, J. S. Pirone, The effect of fluid shear stress upon cell adhesion to fibronectin-treated surfaces. Journal of Biomedical Materials Research 1990; 24: 1333–1353.

DOI: https://doi.org/10.1002/jbm.820241006

[29] M. Moroi, S. M. Jung, K. Shinmyozu, Y. Tomiyama, A. Ordinas, M. DiazRicart. Analysis of platelet adhesion to a collagen-coated surface under flow conditions: the involvement of glycoprotein VI in the platelet adhesion. Blood 1996; 88: 2081–(2092).

[30] S. Usami, H. H. Chen, Y. Zhao, S. Chien, R. Skalak. Design and construction of a linear shear stress flow chamber Annals of Biomedical Engineering 1993; 21: 77–83.

DOI: https://doi.org/10.1007/bf02368167

[31] V. A. Resto, M. M. Burdick, N. M. Dagia, S. D. McCammon, S. M. Fennewald, R. Sackstein. L-selectin-mediated Lymphocyte-Cancer Cell Interactions under Low Fluid Shear Conditions. Journal of Biological Chemistry 2008; 283: 15816–15824.

DOI: https://doi.org/10.1074/jbc.m708899200

[32] H. Oh, S. L. Diamond. Ethanol Enhances Neutrophil Membrane Tether Growth and Slows Rolling on P-Selectin but Reduces Capture from Flow and Firm Arrest on IL-1-Treated Endothelium. The Journal of Immunology, 2008, 181: 2472-2482.

DOI: https://doi.org/10.4049/jimmunol.181.4.2472

[33] P. D. Gaver, S. M. Kute. A theoretical model study of the influence of fluid stresses on a cell adhering to a microchannel wall. Biophysical Journal 1998; 75: 721–733.

DOI: https://doi.org/10.1016/s0006-3495(98)77562-9

[34] C. Dong, J. Cao, E. J. Struble, H. H. Lipowsky. Mechanics of Leukocyte Deformation and Adhesion to Endothelium in Shear Flow. Annals Biomedical Engineering 1999; 27: 298-312.

DOI: https://doi.org/10.1114/1.143

[35] C. Dong, X. X. Lei. Biomechanics of cell rolling: shear flow, cell-surface adhesion, and cell deformability. Journal of Biomechanics 2000; 33: 35-43.

DOI: https://doi.org/10.1016/s0021-9290(99)00174-8

[36] X. X. Lei, M. B. Lawrence, C. Dong. Influence of Cell Deformation on Leukocyte Rolling Adhesion in Shear Flow. Journal of Biomechanical Engineering 1999; 121: 636-643.

DOI: https://doi.org/10.1115/1.2800866

[37] X. H. Liu, X. Wang. The deformation of an adherent leukocyte under steady shear flow: A numerical study. Journal of Biomechanics 2004; 37: 1079–1085.

DOI: https://doi.org/10.1016/j.jbiomech.2003.11.015

[38] B. A. Weisenberg, D. L. Mooradian. Hemocompatibility of materials used in microelectromechanical systems: platelet adhesion and morphology in vitro. Journal of Biomedical Materials Research 2002; 60: 283-291.

DOI: https://doi.org/10.1002/jbm.10076

[39] P. Koumoutsakos, I. Pivkin, F. Milde. The Fluid Mechanics of Cancer and Its Therapy. Annual Review of Fluid Mechanics 2013; 45: 325-355.

DOI: https://doi.org/10.1146/annurev-fluid-120710-101102

[40] L. Weiss, P. M. Ward. Cell detachment and metastasis. Cancer Metastasis Review. 1983; 2: 111-127.

[41] N. Perez. FRACTURE MECHANICS, Boston: Kluwer Academic, (2004).

[42] S. S. Rao. The Finite Method in Engineering, Burlington, USA, (2005).

[43] Abaqus 6. 12 /CAE User's Manual, Rode Island, USA.

[44] J. Katz. Introductory Fluid Mechanics, Cambridge University Press, New York, USA, (2010).

[45] F. Tavano (PhD. Thesis). Cell biomechanics and metastatic spreading: a study on human breast cancer cells. University of Trieste, 2010/(2011).

[46] N. Caille, O. Thoumine, Y. Tardy, J. J. Meister. Contribution of the nucleus to the mechanical properties of endothelial cells Journal of Biomechanics 2002; 35: 177–187.

DOI: https://doi.org/10.1016/s0021-9290(01)00201-9

[47] W. J. Polacheck, I. K. Zervantonakis, R. D. Kamm. Tumor cell migration in complex microenvironments. Cellular and Molecular Life Sciences 2013; 70: 1335-1356.

DOI: https://doi.org/10.1007/s00018-012-1115-1

[48] Q. S. Li, C.T. Lim. Structure-Mechanical Property Changes in Nucleus arising from Breast Cancer, Cellular and Biomolecular Mechanics and Mechanobiology, Springer, USA, (2010).

DOI: https://doi.org/10.1007/8415_2010_19

[49] Y. Teng, J. Qiu, Y. Zheng, X. Luo, L. Zhang, L. Chen, G. Effects of Type I Collagen and Fibronectin on Regulation of Breast Cancer Cell Biological and Biomechanical Characteristics, Wang. Journal of Medical and Biological Engineering 2012; 34: 62-68.

[50] W. H. Grovera, A. K. Bryan, M. Diez-Silva, S. Suresh, J. M. Higgins, S. R. Manalisa. Measuring single-cell density, PNAS 2011; 108: 10992-10996.

[51] S. E. Cross, Y. S. Jin, J. Tondre, R. R. J. Wong, J. K. Gimzewski. A FM-based analysis of human metastatic cancer cells. Nanotechnology 2008; 19: 384003.

DOI: https://doi.org/10.1088/0957-4484/19/38/384003

[52] P. A. Soucy, J. Werbin, W. Heinz, J. H. Hoh, L. H. Romer. Microelastic properties of lung cell-derived extracellular matrix. Acta Biomaterialia 2011; 7: 96–105.

DOI: https://doi.org/10.1016/j.actbio.2010.07.021

[53] A. G. Evans, M. Rühle, B. J. Dalgleish, P. G. Charalambides, The fracture energy of bimaterial interfaces, Metallurgical Transactions 1990; 21: 2419-2429.

DOI: https://doi.org/10.1007/bf02646986

[54] J. W. Hutchinson, Z. Suo, Mixed Mode Cracking in Layered Materials, Advances in Applied Mechanics, 1991; 29: 63–191.

DOI: https://doi.org/10.1016/s0065-2156(08)70164-9