Effects of Adhesion and Stretching on Failure Mechanisms and Optical Properties of Organic Solar Cells


Article Preview

This paper presents the results of a study of the adhesion and optical properties of layered structures that are relevant to stretchable organic solar cells. A combination of modeling and experiments is used to investigate the effects of adhesion and stretching on failure mechanisms and optical properties. The adhesion between the possible bi-layers is determined by incorporating force microscopy measurements of pull-off forces into adhesion models. The failure mechanisms associated with the tensile stretching of the structures are then investigated using a combination of in-situ/ex-situ microscopy observations and analytical/computational models. The resulting changes in optical properties are elucidated before discussing their implications for the design of stretchable organic solar cells



Edited by:

Prof. Wole Soboyejo, Dr. Shola Odusunya, Dr. Zebaze Kana, Dr. Nicolas Anuku, Dr. Karen Malatesta and Dr. Mohammed Dauda




O.K. Oyewole et al., "Effects of Adhesion and Stretching on Failure Mechanisms and Optical Properties of Organic Solar Cells", Advanced Materials Research, Vol. 1132, pp. 89-105, 2016

Online since:

December 2015




[1] M. Pagliaro, C. Palmisano, and R. Ciriminna, Flexible Solar Cells, (2008), 120.

[2] A. Rohatgi, Crystalline Silicon Solar Cells and Modules, NREL 15th Workshop (2005) 11-12.

[3] J. Weiss, P. Kukuri, J. Chiguma, J. Gendon, B. Arfaei, P. Borgesen, and W. Jones, Fabrication of low cost flexible solar using solution-based coating techniques, Global Solar Technology (2011) 10-15.

[4] G. Dennler, C. Lungenschimied, H. Neugebauer, and N. S. Sariciftci, J. Matter. Res., Vol. 20, No. 12, (2005).

[5] F. C. Krebs: Sol. Energy Mater – Solar cells 93 (2009) 1968-(1977).

[6] A.G. Evans and J.W. Hutchinson, The Thermomechanical Integrity of Thin Films and Multilayers, Acta metal. Mater. Vol. 43. No 7, pp.2507-2530, (1995).

[7] L. Blankenburg, K-Schulthsis, H. Schach, S. Sensfuss, M. Schroder, Sol. Energy Mater. Sol. Cell 93(2009) 476-483.

[8] D. R. Hodges, V. Palekis, S. Bhandaru, K. Singh, D. Morel, E. K. Stefenakos, and C. S. Ferekides: Mater. Res. Soc. Symp. Proc. Vol. 1165 (2009).

[9] Stephanie P. Lacour, Joyelle Jones and Sigurd Wagner, Elastomeric Interconnects, International Journal of High Speed Electronics and System, Vol. 16, No 1 (2006) 397- 407.

DOI: https://doi.org/10.1142/s0129156406003722

[10] S. Midturi, Stress-Strain Behaviour of Nano/Micro Thin Film Material, ARPN Journal of Engineering and Applied Science, Vol. 5, No. 3, (2010).

[11] O. Akogwu, D. Kwabi, S. Midturi, M. Eleruja, B. Babatope, W. O. Soboyejo, Large Strain Deformation and Cracking of Nano-Scale Gold Films on PDMS Substrate, Materials Science and Engineering B 170 (2010) 32-40.

DOI: https://doi.org/10.1016/j.mseb.2010.02.023

[12] J. W. Hutchinson, M. D. Thouless, E. G. Liniger, Growth and configurational stability of circular, buckling-driven film delaminations, Acta Metall. Mater., vol. 40, pp.295-308, (1992).

DOI: https://doi.org/10.1016/0956-7151(92)90304-w

[13] R. Huang, J. H. Prevost, Z. Y. Huang and Z. Suo, Channel cracking of thin films with the extended finite element method, Eng. Frac. Mech., vol. 70, pp.2513-2526, (2003).

DOI: https://doi.org/10.1016/s0013-7944(03)00083-3

[14] T. Li and Z. Suo, Ductility of thin metal films on polymer substrates modulated by interfacial adhesion, Int. J. Solids Struct., vol. 44, pp.1696-1705, (2007).

DOI: https://doi.org/10.1016/j.ijsolstr.2006.07.022

[15] Z. Suo, J. H. Prevost and J. Liang, Kinetics of crack initiation and growth in organic containing integrated structures, J. Mech. Phys. Solids, vol. 51, pp.2169-2190, (2003).

[16] Onobu Akogwu, David Kwabi, Auxillia Munhutu, Tiffany Tong, and W. O. Soboyejo, Adhesion and cyclic stretching of Au thin film on poly(dimethyl-siloxane) for stretchable electronics, Journal of Applied Physics 108, 123509 (2010).

DOI: https://doi.org/10.1063/1.3510488

[17] Zheng Jia, Matthew B. Tukker, Teng Hi, Compotes Science and Technology, 71(2011) 365-372.

[18] T. Tong, B. Babatope, S. Admassie, J. Meng, O. Akwogu, W. Akande and W. O. Soboyejo, Adhesion in Organic Structures, Journal of Applied Physics, 106, 083708 (2009).

DOI: https://doi.org/10.1063/1.3246786

[19] In Rev, AO; Vol. AN90 (Veeco Instruments Inc., 2005).

[20] K. L. Johnson, K. Kendel and A. D. Roberts, Surface Energy and the Contact of Elastic Solid, proc. R. soc. Lond., A 324 (1971) 301-313.

[21] B. V. Dejaguin, V. M. Muller and Y. P. Toporov, Effect of Contact Deformations on the Adhesion of particles, J. Colloid Interface Sci. 53 (1971) 314-325.

[22] Matthew B. Tucker, D. R. Hines and Teng Li, Journal of Applied Physics 106, 103504 (2009).

[23] Tang, C. W.: Two-layer Organic Photovoltaic Cell. Appl. Phys. Lett. 48, 183-185 (1986).

[24] H. Yin, R. Huang, K. D. Hobart, J. Liang, Z. Suo, S. R. Shieh, T. S. Duffy, F. J. Kub and J. C. Sturm, Buckling suppression of SiGe islands on compliant substrates, J Appl. Phys., vol. 94, pp.6875-6882, (2003).

DOI: https://doi.org/10.1063/1.1621069

[25] A. G. Evans and J.W. Hutchinson, Int. J. Solid Structures, Vol. 20. No. 5, pp.455-466, (1984).

[26] A. G. Evans, J. W. Hutchinson and Y. Wei, Acta mater. Vol. 47, Nos 15, pp.4093-4113, (1999).