Effects of Adhesion and Stretching on Failure Mechanisms and Optical Properties of Organic Solar Cells

Abstract:

Article Preview

This paper presents the results of a study of the adhesion and optical properties of layered structures that are relevant to stretchable organic solar cells. A combination of modeling and experiments is used to investigate the effects of adhesion and stretching on failure mechanisms and optical properties. The adhesion between the possible bi-layers is determined by incorporating force microscopy measurements of pull-off forces into adhesion models. The failure mechanisms associated with the tensile stretching of the structures are then investigated using a combination of in-situ/ex-situ microscopy observations and analytical/computational models. The resulting changes in optical properties are elucidated before discussing their implications for the design of stretchable organic solar cells

Info:

Periodical:

Edited by:

Prof. Wole Soboyejo, Dr. Shola Odusunya, Dr. Zebaze Kana, Dr. Nicolas Anuku, Dr. Karen Malatesta and Dr. Mohammed Dauda

Pages:

89-105

Citation:

O.K. Oyewole et al., "Effects of Adhesion and Stretching on Failure Mechanisms and Optical Properties of Organic Solar Cells", Advanced Materials Research, Vol. 1132, pp. 89-105, 2016

Online since:

December 2015

Export:

Price:

$41.00

[1] M. Pagliaro, C. Palmisano, and R. Ciriminna, Flexible Solar Cells, (2008), 120.

[2] A. Rohatgi, Crystalline Silicon Solar Cells and Modules, NREL 15th Workshop (2005) 11-12.

[3] J. Weiss, P. Kukuri, J. Chiguma, J. Gendon, B. Arfaei, P. Borgesen, and W. Jones, Fabrication of low cost flexible solar using solution-based coating techniques, Global Solar Technology (2011) 10-15.

[4] G. Dennler, C. Lungenschimied, H. Neugebauer, and N. S. Sariciftci, J. Matter. Res., Vol. 20, No. 12, (2005).

[5] F. C. Krebs: Sol. Energy Mater – Solar cells 93 (2009) 1968-(1977).

[6] A.G. Evans and J.W. Hutchinson, The Thermomechanical Integrity of Thin Films and Multilayers, Acta metal. Mater. Vol. 43. No 7, pp.2507-2530, (1995).

[7] L. Blankenburg, K-Schulthsis, H. Schach, S. Sensfuss, M. Schroder, Sol. Energy Mater. Sol. Cell 93(2009) 476-483.

[8] D. R. Hodges, V. Palekis, S. Bhandaru, K. Singh, D. Morel, E. K. Stefenakos, and C. S. Ferekides: Mater. Res. Soc. Symp. Proc. Vol. 1165 (2009).

[9] Stephanie P. Lacour, Joyelle Jones and Sigurd Wagner, Elastomeric Interconnects, International Journal of High Speed Electronics and System, Vol. 16, No 1 (2006) 397- 407.

DOI: https://doi.org/10.1142/s0129156406003722

[10] S. Midturi, Stress-Strain Behaviour of Nano/Micro Thin Film Material, ARPN Journal of Engineering and Applied Science, Vol. 5, No. 3, (2010).

[11] O. Akogwu, D. Kwabi, S. Midturi, M. Eleruja, B. Babatope, W. O. Soboyejo, Large Strain Deformation and Cracking of Nano-Scale Gold Films on PDMS Substrate, Materials Science and Engineering B 170 (2010) 32-40.

DOI: https://doi.org/10.1016/j.mseb.2010.02.023

[12] J. W. Hutchinson, M. D. Thouless, E. G. Liniger, Growth and configurational stability of circular, buckling-driven film delaminations, Acta Metall. Mater., vol. 40, pp.295-308, (1992).

DOI: https://doi.org/10.1016/0956-7151(92)90304-w

[13] R. Huang, J. H. Prevost, Z. Y. Huang and Z. Suo, Channel cracking of thin films with the extended finite element method, Eng. Frac. Mech., vol. 70, pp.2513-2526, (2003).

DOI: https://doi.org/10.1016/s0013-7944(03)00083-3

[14] T. Li and Z. Suo, Ductility of thin metal films on polymer substrates modulated by interfacial adhesion, Int. J. Solids Struct., vol. 44, pp.1696-1705, (2007).

DOI: https://doi.org/10.1016/j.ijsolstr.2006.07.022

[15] Z. Suo, J. H. Prevost and J. Liang, Kinetics of crack initiation and growth in organic containing integrated structures, J. Mech. Phys. Solids, vol. 51, pp.2169-2190, (2003).

[16] Onobu Akogwu, David Kwabi, Auxillia Munhutu, Tiffany Tong, and W. O. Soboyejo, Adhesion and cyclic stretching of Au thin film on poly(dimethyl-siloxane) for stretchable electronics, Journal of Applied Physics 108, 123509 (2010).

DOI: https://doi.org/10.1063/1.3510488

[17] Zheng Jia, Matthew B. Tukker, Teng Hi, Compotes Science and Technology, 71(2011) 365-372.

[18] T. Tong, B. Babatope, S. Admassie, J. Meng, O. Akwogu, W. Akande and W. O. Soboyejo, Adhesion in Organic Structures, Journal of Applied Physics, 106, 083708 (2009).

DOI: https://doi.org/10.1063/1.3246786

[19] In Rev, AO; Vol. AN90 (Veeco Instruments Inc., 2005).

[20] K. L. Johnson, K. Kendel and A. D. Roberts, Surface Energy and the Contact of Elastic Solid, proc. R. soc. Lond., A 324 (1971) 301-313.

[21] B. V. Dejaguin, V. M. Muller and Y. P. Toporov, Effect of Contact Deformations on the Adhesion of particles, J. Colloid Interface Sci. 53 (1971) 314-325.

[22] Matthew B. Tucker, D. R. Hines and Teng Li, Journal of Applied Physics 106, 103504 (2009).

[23] Tang, C. W.: Two-layer Organic Photovoltaic Cell. Appl. Phys. Lett. 48, 183-185 (1986).

[24] H. Yin, R. Huang, K. D. Hobart, J. Liang, Z. Suo, S. R. Shieh, T. S. Duffy, F. J. Kub and J. C. Sturm, Buckling suppression of SiGe islands on compliant substrates, J Appl. Phys., vol. 94, pp.6875-6882, (2003).

DOI: https://doi.org/10.1063/1.1621069

[25] A. G. Evans and J.W. Hutchinson, Int. J. Solid Structures, Vol. 20. No. 5, pp.455-466, (1984).

[26] A. G. Evans, J. W. Hutchinson and Y. Wei, Acta mater. Vol. 47, Nos 15, pp.4093-4113, (1999).