Quick Stop Device to Analyze the Chip Formation Mechanisms in Face Grinding


Article Preview

The chip formation mechanisms during grinding are not yet fully understood. The abrupt interruption of the grinding process with a quick stop device is a suitable method to analyze the chip formation mechanisms during grinding. However, there is no device available that enables a reproducible interruption at cutting speeds above vc = 5 m/s. Therefore a new method for the interruption of face grinding processes in order to analyze the chip formation mechanisms is presented in this paper. A quick stop device is designed and constructed based on the advantages and disadvantages of former approaches of other researchers. Grinding experiments with different rotational speeds confirm the potential of this new device. Interruptions of the grinding process at cutting speeds of vc = 5 m/s, 15 m/s, 25 m/s and 35 m/s are successfully accomplished. A detailed analysis of the contact zone with the help of SEM pictures impressively shows the interaction of hundreds of cutting edges along the contact zone.



Main Theme:

Edited by:

Jens P. Wulfsberg, Marc Fette, Tobias Montag




T. Göttsching et al., "Quick Stop Device to Analyze the Chip Formation Mechanisms in Face Grinding", Advanced Materials Research, Vol. 1140, pp. 221-227, 2016

Online since:

August 2016




* - Corresponding Author

[1] Lortz W (1979) A model of the cutting mechanism in grinding. Wear 53(1): 115-128.

[2] Zum Gahr KH, Mewes D (1983) Werkstoffabtrag beim Furchungsverschleiß. Metall 37: 1212-1217.

[3] Giwerzew A (2003) Spanbildungsmechanismen und tribologisches Prozessverhalten beim Schleifen mit niedrigen Schnittgeschwindigkeiten. Dr. -Ing. Dissertation, Universität Bremen.

[4] Klocke F, Mattfeld M, Rasim M (2015) Analysis of the grain shape influence on the chip formation in grinding. Journal of Materials Processing Technology 226: 60-68.

DOI: https://doi.org/10.1016/j.jmatprotec.2015.06.041

[5] Aurich JC, Biermann D, Blum H, Brecher C, Carstensen C, Denkena B, Klocke F, Kröger M, Steinmann P, Weinert K (2009) Modelling and simulation of processes: machine interaction in grinding. Prod Eng Res Dev 3: 111-120.

DOI: https://doi.org/10.1007/s11740-008-0137-x

[6] Lierse T (1998) Mechanische und thermische Wirkung beim Schleifen keramischer Werkstoffe. Dr. -Ing. Dissertation, Universität Hannover.

[7] Furrer J, Dunichert P (1974) Vorrichtung zur plötzlichen Schnittunterbrechung. Fertigung 5(3): 105-108.

[8] Buda J, Liptak J (1988) Grinding mechanism investigation based on winning and evaluation of the chip roots. J Mech Work Technol 17: 157-165.

DOI: https://doi.org/10.1016/0378-3804(88)90017-4

[9] Denkena B, Köhler J, Kästner J (2012) Chip formation in grinding: an experimental study, Prod Eng Res and Devel (WGP), Volume 6, Number 2: 107-115.

DOI: https://doi.org/10.1007/s11740-011-0360-8

[10] Denkena B, Grove T, Seiffert F (2015) Chip root analyses in peripheral longitudinal up-grinding by means of a new quick-stop device, International Journal of Abrasive Technology, Volume 7, Number 1: 59-72.

DOI: https://doi.org/10.1504/ijat.2015.070583

[11] Tönshoff HK, Denkena B (2013) Basic of Cutting and Abrasive Processes, Lecture Notes in Production Engineering, Springer.

[12] Kaestner J (2013) Methode zur spanenden Herstellung reibungsminimierender Mikroschmiertaschen, Dr. -Ing. Dissertation, Universität Hannover.

[13] Wu CL, Wang KS, Tsai LC (2006) A new electromagnetic quick stop device for metal cutting studies, Springer-Verlag London, The International Journal of Advanced Manufacturing Technology, Volume 29, Issue 9: 853-859.

DOI: https://doi.org/10.1007/s00170-005-2608-y