Integrating Workers’ Feedback into Continuous Information Flows: Enabling Lean Quality Assurance by Worker Information Systems


Article Preview

Worker information systems provide the right information at the right time in a lean way. In this paper, the need for an integrated feedback system with formalised text parts is exposed. To meet the disadvantages of a lack of feedback, two important points are identified: involving of workers and guaranteeing a high information quality. Several approaches show that workers have to be included into an early stage of product development process to improve product details and especially assembly scenarios. Also, workers get an idea of their contribution to a zero-waste production. If more information is created, the quality gets more important. It is explained what quality criteria should be considered. Technical realisations for a feedback system close this paper.



Main Theme:

Edited by:

Jens P. Wulfsberg, Marc Fette, Tobias Montag




C. Fischer et al., "Integrating Workers’ Feedback into Continuous Information Flows: Enabling Lean Quality Assurance by Worker Information Systems", Advanced Materials Research, Vol. 1140, pp. 435-442, 2016

Online since:

August 2016




* - Corresponding Author

[1] J. Champy, X-Engineering the corporation: reinventing your business in the digital age, Warner Books, New York, (2002).

[2] F. Risch, R. Berndt, J. Franke, Schlanke Informationsflüsse für eine effiziente Produktion - Verbesserte Verfügbarkeit und Nutzung produktionsrelevanter Informationen durch standardisierte Datenbereitstellungs- und Änderungsprozesse, ZWF Jahrgang 106 (2011).


[3] M. Lušić, R. Hornfeck, C. Fischer, J. Franke, Lean Information Management of Manual Assembly Processes: Creating IT-based Information Systems for Assembly Staff Simultaneous to the Product Engineering Process, Applied Mechanics and Materials 421 (2013).


[4] S. Lang, Durchgängige Mitarbeiterinformation zur Steigerung von Effizienz und Prozesssicherheit in der Produktion, Meisenbach Verlag, Bamberg, (2007).

[5] S. Slama, Effizienzsteigerung in der Montage durch marktorientierte Montagestrukturen und erweiterte Mitarbeiterkompetenz, Meisenbach Verlag, Bamberg, (2004).

[6] S.K. Ong, M.L. Yuan, C. Nee, Augmented reality applications in manufacturing: a survey, International Journal of Production Research 46 (2008) 10, pp.2707-2742.


[7] M. Lušić, K. Schmutzer-Braz, S. Wittmann, C. Fischer, R. Hornfeck, J. Franke, Worker information systems including Dynamic Visualisation: a Perspective for Minimising the Conflict of Objectives between a Resource-efficient Use of Inspection Equipment and the Cognitive Load of the Worker, Advanced Materials Research 1018 (2014).


[8] D. Roller, Technical Information System for Assembly, Test and Service Documentation, in: P. Brödner, W. Karwowski (Eds. ), Ergonomics of Hybrid Automated Systems III, Proceedings of the Third International Conference on Human Aspects of Advanced Manufacturing and Hybrid Automation, Gelsenkirchen, Germany, August 26-28, 1992, Elsevier Science Publishers B.V., Amsterdam, The Netherlands, 1992, pp.273-278.


[9] C. Fischer, M. Lušić, J. Bönig, R. Hornfeck, J. Franke, Shortening innovation cycles by employee training based on the integration of virtual validation into worker information systems, in: J. Erkoyuncu (Ed. ), 4th CIRP Global Web Conference (CIRPe), Procedia CIRP (Volume 37), Elsevier B.V., Amsterdam, 2015, pp.65-70.


[10] C. Fischer, J. Bönig, J. Franke, M. Lušić, R. Hornfeck, Worker information system to support during complex and exhausting assembly of high-voltage harness, 2015 5th International Electric Drives Production Conference (E|DPC), Proceedings, pp.212-218.


[11] J. Schmidtler, V. Knott, C. Hölzel, K. Bengler, Human Centered Assistance Applications for the working environment of the future, Occupational Ergonomics 12 (2015) 3, p.83–95.


[12] F. Wallhoff, M. Ablassmeier, G. Rigoll, Multimodal Face Detection, Head Orientation and Eye Gaze Tracking, in: IEEE (Ed. ): IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, 2006, p.13–18.


[13] M. F. Zäh, M. Wiesbeck, A Model for Adaptively Generating Assembly Instructions Using State-based Graphs, in: M. Mitsuishi, K. Ueda, F. Kimura (Eds. ), Manufacturing Systems and Technologies for the New Frontier, The 41st CIRP Conference on Manufacturing Systems, May 26-28 2008, Tokyo, Japan, Springer, London, p.195.


[14] S. Niedersteiner, C. Pohlt, T. Schlegl, Smart Workbench: A Multimodal and Bidirectional Assistance System for Industrial Application, in: Industrial Electronics Society, IECON 2015 - 41st Annual Conference of the IEEE, Yokohama, 2015, pp.2938-2943.


[15] A. Bannat, T. Bautze, M. Beetz, J. Blume, K. Diepold et al., Artificial Cognition in Production Systems, IEEE Transactions on Automation Science and Engineering, vol. 8, no. 1, Jan. 2011, pp.148-174.

[16] J. Götz, J. Franke, A. Müller-Martin, M. Forthaus, B. Grobholz, Application of Design Elements for an Engineering Community in a Multi-sector Engineering Company, in: F. F. Chen (Ed. ), Proceedings of the 24th FAIM Conference, DEStech Publications, p.153.


[17] J. Bönig, C. Fischer, H. Weckend, F. Döbereiner, J. Franke, Accuracy and immersion improvement of hybrid motion capture based real time virtual validation, in: G. Moroni and T. A. M. Tolio (Eds. ), Proceedings of the 24th CIRP Design Conference 2014, Milano, April 14‐16 2014, Elsevier B.V., p.294.


[18] B. Gustafsson, Visual Process Instructions for knowing how, in: Manufacturing Technology in the Information Age, 35. CIRP International Seminar on Manufacturing Systems, Seoul, Korea, May 13-15 2002, p.147–154.

[19] M. Michl, Webbasierte Ansätze zur ganzheitlichen technischen Diagnose, Meisenbach Verlag, Bamberg, (2013).