A Data-Driven Simulation-Based Optimisation Approach for Adaptive Scheduling and Control of Dynamic Manufacturing Systems


Article Preview

The increasing customisation of products, which leads to higher numbers of product variants with smaller lot sizes, requires a high flexibility of manufacturing systems. These systems are subject to dynamic influences and need increasing effort for the generation of the production schedules and for the control of the processes. This paper presents an approach that addresses these challenges. First, scheduling is done by coupling an optimisation heuristic with a simulation model to handle complex and stochastic manufacturing systems. Second, the simulation model is continuously adapted by real-time data from the shop floor. If, e.g., a machine breakdown or a rush order appears, the simulation model and consequently the scheduling model is updated and the optimisation heuristic adjusts an existing schedule or generates a new one. This approach uses real-time data provided by future cyber-physical systems to integrate scheduling and control and to manage the dynamics of highly flexible manufacturing systems.



Main Theme:

Edited by:

Jens P. Wulfsberg, Marc Fette, Tobias Montag




M. Kück et al., "A Data-Driven Simulation-Based Optimisation Approach for Adaptive Scheduling and Control of Dynamic Manufacturing Systems", Advanced Materials Research, Vol. 1140, pp. 449-456, 2016

Online since:

August 2016




* - Corresponding Author

[1] J. Mula, D. Peidro, M. Díaz-Madroñero, E. Vicens, Mathematical programming models for supply chain production and transport planning, European Journal of Operational Research 204 (2010) 377-390.

DOI: https://doi.org/10.1016/j.ejor.2009.09.008

[2] J.T. Lin, C.M. Chen, Simulation optimization approach for hybrid flow shop scheduling problem in semiconductor back-end manufacturing, Simulation Modelling Practice and Theory 51 (2015) 100-114.

DOI: https://doi.org/10.1016/j.simpat.2014.10.008

[3] J.H. Ge, H. Gao, Y.P. Wang, P.Q. Fu, C.T. Zhang, Research on Optimization Method of Real-time Available Resources for Dynamic Scheduling, International Journal of Database Theory & Application 7 (2014) 91-98.

[4] J. Lee, B. Bagheri, H.A. Kao, A Cyber-Physical Systems architecture for Industry 4. 0-based manufacturing systems, Manufacturing Letters 3 (2015) 18-23.

DOI: https://doi.org/10.1016/j.mfglet.2014.12.001

[5] J. Jungwattanakit, M. Reodecha, P. Chaovalitwongse, F. Werner, Algorithms for flexible flow shop problems with unrelated parallel machines, setup times, and dual criteria, The International Journal of Advanced Manufacturing Technology 37 (2008).

DOI: https://doi.org/10.1007/s00170-007-0977-0

[6] D. Quadt, H. Kuhn, A taxonomy of flexible flow line scheduling procedures, European Journal of Operational Research 178 (2007) 686-698.

DOI: https://doi.org/10.1016/j.ejor.2006.01.042

[7] C.H. Papadimitriou, Computational complexity, in: Encyclopedia of Computer Science, John Wiley and Sons Ltd., Chichester, 2003, pp.260-265.

[8] V. Gondek, Hybrid flow shop scheduling mit verschiedenen Restriktionen: Heuristische Lösung und LP-basierte untere Schranken, Dissertation, University of Duisburg-Essen, (2011).

[9] T.E. Morton, D.W. Pentico, Heuristic scheduling systems: with applications to production systems and project management, Wiley, New York, (1993).

[10] J. Hartmann, T. Makuschewitz, E.M. Frazzon, B. Scholz-Reiter, A genetic algorithm for the integrated scheduling of production and transport systems, in: S. Helber, M. Breitner, D. Rösch, C. Schön, J. -M. Graf von der Schulenburg, P. Sibbertsen, M. Steinbach, S. Weber, A. Wolter (Eds. ), Operations Research Proceedings 2012. Springer, Berlin/Heidelberg, 2013, pp.533-539.

DOI: https://doi.org/10.1007/978-3-319-00795-3

[11] M. Kück, B. Scholz-Reiter, A Genetic Algorithm to Optimize Lazy Learning Parameters for the Prediction of Customer Demands, Proceedings of the 12th International Conference on Machine Learning and Applications (ICMLA 2013), IEEE Press, 2013, pp.160-165.

DOI: https://doi.org/10.1109/icmla.2013.183

[12] M. Freitag, T. Hildebrandt, Automatic design of scheduling rules for complex manufacturing systems by multi-objective simulation-based optimization, submitted to CIRP-Annals - Manufacturing Technology, (2016).

DOI: https://doi.org/10.1016/j.cirp.2016.04.066

[13] S. Mehta, R. Uzsoy, Predictable scheduling of a single machine subject to breakdowns, International Journal of Computer Integrated Manufacturing, 12 (1999) 15–38.

DOI: https://doi.org/10.1080/095119299130443

[14] S. Janak, X. Lin, C. Floudas, A new robust optimization approach for scheduling under uncertainty II. Uncertainty with known probability distribution, Computers & Chemical Engineering, 31 (2007) 171-195.

DOI: https://doi.org/10.1016/j.compchemeng.2006.05.035

[15] S. Van de Vonder, F. Ballestin, E. Demeulemeester, W. Herroelen, Heuristic procedures for reactive project scheduling, Computers & Industrial Engineering, 52 (2007) 11-28.

DOI: https://doi.org/10.1016/j.cie.2006.10.002

[16] D. Ouelhadj, S. Petrovic, A survey of dynamic scheduling in manufacturing systems, Journal of scheduling, 12 (2008) 417-431.

DOI: https://doi.org/10.1007/s10951-008-0090-8

[17] F. Longo, Emergency simulation: state of the art and future research guidelines, SCS M&S Magazine, 1 (2010) 2010-04.

[18] J.F. O'kane, J.R. Spenceley, R. Taylor, Simulation as an essential tool for advanced manufacturing technology problems, Journal of Materials Processing Technology, 107 (2000) 412-424.

DOI: https://doi.org/10.1016/s0924-0136(00)00689-0

[19] J. Banks, J.S. Carson, B.L. Nelson, D.M. Nicol, Discrete-Event System Simulation, Prentice hall, New York, (2000).

[20] S.K. Jain, V.P. Singh, Water resources systems planning and management, Elsevier, (2003).

[21] F. Pirard, S. Iassinovski, F. Riane, A simulation based approach for supply network control, International Journal of Production Research, 49 (2011) 7205-7226.

DOI: https://doi.org/10.1080/00207543.2010.518726

[22] W. Krug, T. Wiedemann, J. Liebelt, B. Baumbach, Simulation and optimization in manufacturing, organization and logistics, in: Proceedings 14th European Simulation Symposium, SCS Europe BVBA, (2002).

[23] M.C. Fu, Optimization for simulation: Theory vs. practice. INFORMS Journal on Computing, 14 (2002) 192-215.

[24] L. März, W. Krug, O. Rose, G. Weigert, Simulation und Optimierung in Produktion und Logistik. Praxisorientierter Leitfaden mit Fallbeispielen, Springer, Heidelberg, (2011).

DOI: https://doi.org/10.1007/978-3-642-14536-0

[25] H.P. Wiendahl, J.W. Breithaupt, Modelling and controlling the dynamics of production systems, Production planning & control, 10 (1999) 389-401.

DOI: https://doi.org/10.1080/095372899233136

[26] V.V. Prabhu, N.A. Duffie, Nonlinear dynamics in distributed arrival time control of heterarchical manufacturing systems. IEEE Transactions on Control Systems Technology, 7 (1999) 724-730.

DOI: https://doi.org/10.1109/87.799673