Evaluation of Strategies for the Coupling of Central Planning and Autonomous Control in Dynamic Job Shop Environments

Abstract:

Article Preview

Autonomous control is a promising approach to cope with increasing dynamics in production environments. However, an important issue for the acceptance of autonomous control is the provision of a sufficient planning accuracy, e.g., regarding order sequences or workstation assignments. Therefore, transferring autonomous control into practical application requires the coupling of autonomous control with commonly used central planning methods. This paper introduces coupling strategies with different degrees of planning adherence. The introduced strategies are applied to the example of a job shop environment based on real data. The simulation-based comparison considers performance indicators concerning the logistic performance and planning adherence. Besides varying the level of dynamic influences, the simulation study also analyses the impact of different method combinations onto the coupled methods’ performance.

Info:

Periodical:

Main Theme:

Edited by:

Jens P. Wulfsberg, Marc Fette, Tobias Montag

Pages:

457-464

Citation:

S. Schukraft et al., "Evaluation of Strategies for the Coupling of Central Planning and Autonomous Control in Dynamic Job Shop Environments", Advanced Materials Research, Vol. 1140, pp. 457-464, 2016

Online since:

August 2016

Export:

Price:

$38.00

* - Corresponding Author

[1] L. Monostori, P. Valckenaers, A. Dolgui, H. Panetto, M. Brdys, B.C. Csáji, Cooperative control in production and logistics, Annual Reviews in Control, 39 (2015), 12-29.

DOI: https://doi.org/10.1016/j.arcontrol.2015.03.001

[2] M. Freitag, O. Herzog, B. Scholz-Reiter, Selbststeuerung logistischer Prozesse: Ein Paradigmenwechsel und seine Grenzen. Industrie Management, 20 (2004), 23-27.

[3] H. Lödding, Handbook of Manufacturing Control: Fundamentals, Description, Configuration, Berlin (2013).

[4] J. Curry, B. Peters, Rescheduling parallel machines with stepwise increasing tardiness and machine assignment stability objectives. International Journal of Production Research, 43 (2005), 3231-3246.

DOI: https://doi.org/10.1080/00207540500103953

[5] S. Grundstein, S. Schukraft, B. Scholz-Reiter, M. Freitag, Evaluation system for autonomous control methods in coupled planning and control systems. In: Proceedings of 9th CIRP Conference on Intelligent Computation in Manufacturing Engineering, 2015, 121-126.

DOI: https://doi.org/10.1016/j.procir.2015.06.023

[6] K. Windt, O. Jeken, Allocation flexibility-a new flexibility type as an enabler for autonomous control in production logistics. In: 42nd CIRP conference on manufacturing systems, (2009).

[7] A. Gupta, S. Chauhan, A heuristic algorithm for scheduling in a flow shop environment to minimize makespan. International Journal of Industrial Engineering Computations, 6 (2015), 173-184.

DOI: https://doi.org/10.5267/j.ijiec.2014.12.002

[8] D. Ouelhadj, S. Petrovic, A Survey of Dynamic Scheduling in Manufacruting Systems. Journal of Scheduling, 12 (2009), 32-43.

[9] G.E. Vieira, J.W. Herrmann, E. Lin, Rescheduling manufacturing systems: a framework of strategies, policies, and methods. Journal of scheduling, 6 (2003), 39-62.

[10] B. Scholz-Reiter, H. Rekersbrink, M. Görges, Dynamic flexible flow shop problems - scheduling heuristics vs. autonomous control. CIRP Annals-Manufacturing Technology, 59 (2010), 465-468.

DOI: https://doi.org/10.1016/j.cirp.2010.03.030

[11] B. Scholz-Reiter, M. Freitag, C. De Beer, T. Jagalski, The influence of production networks' complexity on the performance of autonomous control methods. Proceedings of the 5th CIRP International Seminar on Computation in Manufacturing engineering, 2006, 317-320.

[12] S. Schukraft, S. Grundstein, M. Freitag, B. Scholz-Reiter, Coupling of central planning and autonomous control - A framework for the selection of promising methods and strategies. submitted to Computers & Industrial Engineering (2016).

DOI: https://doi.org/10.1109/smc.2015.34

[13] J. Giffler, G.L. Thompson, Algorithms for solving production scheduling problems, Operations Research, 8 (1960), 487-503.

DOI: https://doi.org/10.1287/opre.8.4.487

[14] K. Windt, T. Becker, O. Jeken, A. Gelessus, A Classification Pattern for Autonomous Control Methods in Logistics. Logistics Research, 2 (2010), 109-120.

DOI: https://doi.org/10.1007/s12159-010-0030-9

[15] B. Scholz-Reiter, T. Jagalski, and J. C. Bendul, Autonomous control of a shop floor based on bee's foraging behaviour, Dynamics in Logistics, Berlin, 2008, pp.415-423.

DOI: https://doi.org/10.1007/978-3-540-76862-3_41

[16] M. Weyer, Das Produktionssteuerungskonzept Perlenkette und dessen Kennzahlensystem, Karlsruhe, (2002).

[17] K. Windt, T. Philipp, F. Böse, T. Becker, Application of a three-component evaluation system for autonomous control in logistics. Proceedings of the Institution of Mechanical Engineers: Journal of Engineering Manufacture, 224 (2010), 1267-76.

DOI: https://doi.org/10.1243/09544054jem1656