Thermal and Optical Properties of Glycine Crystals with Additives of Nitrates


Article Preview

Semi-organic crystals of Glycine Sodium nitrate Calcium nitrate (GSC) with two different molar ratios were grown using slow evaporation technique. Crystals of size 22 × 16 mm were obtained within time period of 3-4 weeks at ambient temperature. The compositional study and purity of the crystals were determined using Energy Dispersive X-ray Analysis (EDAX) and CHN Analyzer. Surface of the crystals was studied at micrometer scale with optical microscopy. These crystals were characterized by powder X-ray diffraction and indexing of diffraction pattern was done based on monoclinic system. We also studied thermal properties of these crystals using TGA/DTA/DTG analysis. From UV-Vis spectra we could observe wide transparency window from these crystals in the visible region, which can be useful for opto-electronic applications.



Edited by:

A.C. Sharma, Prasanna. S. Ghalsasi and Prafulla. K. Jha




V. P. Gujarati et al., "Thermal and Optical Properties of Glycine Crystals with Additives of Nitrates", Advanced Materials Research, Vol. 1141, pp. 136-141, 2016

Online since:

August 2016




* - Corresponding Author

[1] Vivek P. Gujarati, M. P. Deshpande, Kamakshi Patel, S. H. Chaki, International Letters of Chemistry, Physics and Astronomy. 61 (2015) 12-18.


[2] S. A. Martin Britto Dhas, Natrajan S., Optics communications. 278 (2007) 434.

[3] Khandpekar M. M., Shailesh S Dongare et al, Optics Communications 284 (2011) 1578.

[4] Khandpekar M. M., Pati S P, Optics Communications 284 (2011) 818.

[5] D. Eimert, S. Velsko, L. Davis, F. Wang, G. Loiaceono, G. Kennedy, IEEE Journal of Quantum Electronics 25 (1989) 179.

[6] M. D. Agarwal, J. Choi W.S. Wang, K. Bhat, R.B. Lal, A.D. Shied, B.G. Penn, D.O. Frazier, Journal of Crystal Growth 204 (1999) 179.

[7] M. N. Ravishankar, M A Ahlam, R Chandramani, and A P Gnana Prakash, Indian journal of pure & applied physics 55 (2013) 55.

[8] J. H. Paredes, D.G. Mintik, O.H. Negrete, H.E. Ponce, M.E. Alvarez, R.R.R. Mijangos, A.

[9] D. Moller, J. Phys. Chem. Solids 69 (2008) (1974).

[10] R. Pepinsky, Y. Okaya, D.P. Eastman, T. Mitsui, Phys. Rev. 107 (1957) 1538.

[11] S. A. Martin Britto, S. Natarajan, Mater. Opt. Commun. 278 (2007) 434.

[12] S. Natarajan, Zeitschrift für Kristallographie 163 (1983) 305.

[13] Brahadeeswaran S., Bhat H. , Kini N S, Umarji A M, Balay P, Goyal P S, J Appl Phys, 88 (2000) 5935.

[14] Kirubhavati K., Selvaraju K., Valluvan R, Kumaraman S, Mat Lett, 61 (2007) 4173.

[15] Rajasekaran R., Ushashree P. M., Jayavel R, Ramasamy P, J Crystal Growth 229 (2001) 563.

[16] Joshi V. N., Photoconductivity, Marcel Dekker, New York, (1990).

[17] Sears G. W., J Chem phys, 37 (1962) 2155.

[18] Williams J. O., Adams I., Thomas J. M., J Mat. Sci, 4 (1969) 1064.

[19] Koslovskii M I, Sov Phys Crystalogr, 2 (1957) 146.

[20] Lemmelein G. G., Dukora E. D., Cheror A. A., Sov. Phys Crystalogr, 2 (1959) 426.

[21] D. R. Yuan, N Zhang et. al, Chin J. Lasers 17 (1990) 332.

[22] W. B. Hou, D R Yuan et. al., J Crystal Growth, 133 (1993) 71.

[23] Y. P. Tian, C Y Duan et. al., Inorg. Chem. 36 (1997) 124.

[24] F. Yakuphanoglua, A. O. Gorgulub, A. Cukurovalib, Physica B. 353 (2004) 223.

Fetching data from Crossref.
This may take some time to load.