Experimental Investigation on Friction Stir Butt Welded Aluminium 6061-T6 Alloy Using Taguchi L9 Experimental Approach


Article Preview

Two sheets of aluminium 6061-T6 alloy of size 400×150×3 (mm) is butt welded by the friction stir welding by varying the process parameter such as rotational speed, tilt angle and feed. The ranges of process parameters are rotational speed 560, 900 and 1400 RPM, tilt angle 0, 0.5 and 1 and feed 20, 63 and 100 mm/min. The hexagonal shape of probe is taken to carry out the friction stir welding. The Taguchi L9 experimental approach is used to draw the 9 experimental conditions. The temperature at the weld bead as well as on the probe during the welding is measured by the help of a LASER gun. The hardness at the weld bead and parent metal is measured after the welding. Taguchi L9 approach is used to optimize the process parameters to identify the individual as well as simultaneous effects of the process parameters on the responses temperature and hardness of the weld joint. The optimum conditions for the better fitment of the process parameter and responses are identified through this experimentation.



Edited by:

Swami Naidu Gurugubelli and K Siva Prasad




D. Maneaih et al., "Experimental Investigation on Friction Stir Butt Welded Aluminium 6061-T6 Alloy Using Taguchi L9 Experimental Approach", Advanced Materials Research, Vol. 1148, pp. 176-186, 2018

Online since:

June 2018




* - Corresponding Author

[1] Aliha, M.R.M., Shahheidari, M. & Bisadi, M, Mechanical and metallurgical properties of dissimilar AA6061-T6 and AA7277-T6 joint made by FSW technique,, The International Journal of Advanced Manufacturing Technology, Vol. 86, No. 9-12, pp.2551-2565 (2016).

DOI: https://doi.org/10.1007/s00170-016-8341-x

[2] Rodriguez, R.I., Jordon, J.B., Allison, P.G., Rushing, T. and Garcia, L. Microstructure and mechanical properties of dissimilar friction stir welding of 6061-to-7050 aluminum alloys, Materials & Design, Vol. 86, No.1, pp.60-65 (2015).

DOI: https://doi.org/10.1016/j.matdes.2015.05.074

[3] Ilangovan, M., Boopathy, S.R. and Balasubramanian, V. Effect of tool pin profile on microstructure and tensile properties of friction stir welded dissimilar AA 6061–AA 5086 aluminium alloy joints, Defence Technology, Vol. 11, No. 2, pp.174-184 (2015).

DOI: https://doi.org/10.1016/j.dt.2015.01.004

[4] Liu, G., Murr, L.E., Niou, C-S., McClure, J.C. and Vega, F.R. (1997) Microstructural aspects of the friction-stir welding of 6061-T6 aluminum, Scripta Materialia, Vol. 37, No. 3, pp.355-361.

DOI: https://doi.org/10.1016/s1359-6462(97)00093-6

[5] Treadgill, P.L., Leonard, A.J., Shercliff, H.R. and Withers, P.J. Friction stir welding of aluminium alloys, International Materials Reviews, Vol. 54, No. 2, pp.49-93 (2009).

DOI: https://doi.org/10.1179/174328009x411136

[6] Kimapong, K., Kaewwichit, J., Roybang, W., Poonnayom, P. and Chantasri, S. Friction Stir Welding Tool Geometries Affecting Tensile Strength of AA6063 - T1 Aluminum Alloy Butt Joint, International Journal of Advanced Smart Convergence, Vol. 4, No. 1, p.145 – 153 (2015).

DOI: https://doi.org/10.7236/ijasc.2015.4.1.145

[7] Kim, Y.G., Kim, J.S. & Kim, I.J. Effect of process parameters on optimum welding condition of dp590 steel by friction stir welding, Journal of Mechanical Science and technology, Vol. 28, No. 12, pp.5143-5148 (2014).

DOI: https://doi.org/10.1007/s12206-014-1138-7

[8] Yan, Z., Liu, X. & Fang, H. Mechanical properties of friction stir welding and metal inert gas welding of Al-Zn aluminum alloy joints, The International Journal of Advanced Manufacturing Technology, Vol 91, No.  9–12, p.3025–3031 (2017).

DOI: https://doi.org/10.1007/s00170-017-0021-y

[9] Mun, H.S. and Seo, S-I. Welding strain analysis of friction stir-welded aluminum alloy structures using inherent strain-based equivalent loads,, Journal of Mechanical Science and Technology, Vol. 27, No. 9, pp.2775-2782 (2012).

DOI: https://doi.org/10.1007/s12206-013-0724-4

[10] Cam, G. & Mistikoglu, S. Recent Developments in Friction Stir Welding of Al-alloys,, Journal of Materials Engineering and Performance, , Vol 23, No. 6, p.1936–1953 (2014).

DOI: https://doi.org/10.1007/s11665-014-0968-x

[11] Trueba, L., Torres, M.A., Johannes, L.B. Process optimization in the self-reacting friction stir welding of aluminum 6061-T6,, International Journal of Material Forming. https://doi.org/10.1007/s12289-017-1365-4 (2017).

DOI: https://doi.org/10.1007/s12289-017-1365-4

[12] Liu, X.C., Sun, Y.F., Morisada, Y. & Fujii, H. Dynamics of rotational flow in friction stir welding of aluminium alloys,, Journal of Materials Processing Technology, Vol 252, No. 1, pp.643-651 (2018).

DOI: https://doi.org/10.1016/j.jmatprotec.2017.10.033

[13] Ma, Z.Y., Feng, A.H., Chen, D.L. & Shen, J. Recent Advances in Friction Stir Welding/Processing of Aluminum Alloys: Microstructural Evolution and Mechanical Properties, Critical Reviews in Solid State and Materials Sciences, https://doi.org/10.1080/10408436.2017.1358145 (2017).

DOI: https://doi.org/10.1080/10408436.2017.1358145

[14] Yazdipour, A. & Heidarzadeh, A. Effect of friction stir welding on microstructure and mechanical properties of dissimilar Al 5083-H321 and 316L stainless steel alloy joints, Journal of Alloys and Compounds, Vol. 680, No. 1 pp.595-603 (2016).

DOI: https://doi.org/10.1016/j.jallcom.2016.03.307

[15] Panda, B., garg, A., Jian, Z., Heidrzadeh & Gao, L. Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed,, Frontiers of Mechanical Engineering, Vol. 11, No. 3, p.289–298 (2016).

DOI: https://doi.org/10.1007/s11465-016-0393-y

[16] Sahu, P.K., Pal, S. Pal, S.K. & Jain, R. Influence of plate position, tool offset and tool rotational speed on mechanical properties and microstructures of dissimilar Al/Cu friction stir welding joints, , Journal of Materials Processing Technology, Vol. 235, no. 1, pp.55-67 (2016).

DOI: https://doi.org/10.1016/j.jmatprotec.2016.04.014