A Review on Non-Asbestos Friction Materials: Material Composition and Manufacturing

Abstract:

Article Preview

The peculiar feature of friction materials to absorb the kinetic energy of rotating wheels of an automobile to control the speed makes them remarkable in automobile field. The regulation of speed cannot be achieved with the use of single phase material as a friction material. Consequently, the friction material should be comprised of composite materials which consist of several ingredients. Incidentally, the friction materials were formulated with friction modifier, binders, fillers and reinforcements. Due to its pleasant physical properties, asbestos was being used as a filler. Past few decades, it is found that asbestos causes dangerous cancer to its inhaler, which provides a scope its replacement. Several attempts have been made to find an alternative to the hazardous asbestos. The efforts made by different researchers for the impact of every composition of composite friction material in the field are reviewed and studied for their effect on the properties of friction material. Surface morphological studies of different friction material are compared to interpret the concept of surface wear and its correlation with material properties.

Info:

Periodical:

Edited by:

Dr. Stanislav Kolisnychenko

Pages:

22-42

Citation:

D. Shinde et al., "A Review on Non-Asbestos Friction Materials: Material Composition and Manufacturing", Advanced Materials Research, Vol. 1150, pp. 22-42, 2018

Online since:

November 2018

Export:

Price:

$38.00

* - Corresponding Author

[1] Ćatić, D.; Glišović, J.; Miković, J.; Veličković, S. Analysis of Failure Causes and the Criticality Degree of Elements of Motor Vehicle's Drum Brakes. Tribology in Industry, 36 (2014), 316-325.

[2] Bijwe, J., Composites as Friction Materials: Recent Developments in Non-Asbestos Fiber-Reinforced Friction Materials-A Review, Polymer Composites. 18 (1997) 378-396.

DOI: https://doi.org/10.1002/pc.10289

[3] Kermc, M.; Kalin, M.; Vizintin, J., Development and use of an apparatus for tribological evaluation of ceramic-based brake materials. Wear, 259 (2005) 1079–1087.

DOI: https://doi.org/10.1016/j.wear.2004.12.002

[4] Cho, M.; Kim, S.; Kim, D.; Jang H. Effects of ingredients on tribological characteristics of a brake lining: an experimental case study. Wear, 258 (2005) 1682–1687.

DOI: https://doi.org/10.1016/j.wear.2004.11.021

[5] Chunhong, Z.; Junxiu, D.; Shizhu, W.; Yuansheng, J. Investigation of matching characteristics of important frictional materials with lubricant antiwear additives. Wear 152 (1992) 317-325.

DOI: https://doi.org/10.1016/0043-1648(92)90129-v

[6] Eriksson, M.; Bergman, F.; Jacobson, S. On the nature of tribological contact in automotive brakes. Wear 252 (2002) 26–36.

DOI: https://doi.org/10.1016/s0043-1648(01)00849-3

[7] Wahlström, J. A Factorial Design to Numerically Study the Effects of Brake Pad Properties on Friction and Wear Emissions. Advances in Tribology (2016)1-10.

DOI: https://doi.org/10.1155/2016/8181260

[8] Kim, S.; Cho, M; Cho, K.; Jang, H. Complementary effects of solid lubricants in the automotive brake lining. Tribology International, (2007), 40,15–20.

DOI: https://doi.org/10.1016/j.triboint.2006.01.022

[9] Scieszka, S. Tribological Phenomena in Steel-Composite Brake Material Friction Pairs. Wear, 64 (1980) 361-318.

DOI: https://doi.org/10.1016/0043-1648(80)90142-8

[10] Filip, P.; Weiss, Z.; Rafaja, D. On friction layer formation in polymer matrix composite materials for brake applications. Wear, 252 (2002) 189–198.

DOI: https://doi.org/10.1016/s0043-1648(01)00873-0

[11] Honselaar, A.C.M.; Gee, A.W.J. de. Dynamic thermoanalytical test method for qualifying brake lining materials. Tribology international, (1985) 21-27.

DOI: https://doi.org/10.1016/0301-679x(85)90005-2

[12] Berry, G.; Newhouse, M L. Mortality of workers manufacturing friction materials using asbestos. British Journal of Industrial Medicine, 40 (1983) 1-7.

[13] Verma, P.; Ciudin, R.; Bonfanti, A; Aswath, P.; Straffelini, G.; Gialanella, S. Role of the friction layer in the high-temperature pin-on-disc study of a brake material. Wear, 346-347 (2016) 56–65.

DOI: https://doi.org/10.1016/j.wear.2015.11.004

[14] Österlea, W.; Dörfel, I.; Prietzel, C.; Roocha, H.; Cristol-Bulthé, A.-L.; Degallaix, G.; Desplanques, Y. A comprehensive microscopic study of third body formation at the interface between a brake pad and brake disc during the final stage of a pin-on-disc test. Wear, 2009, 267, 781–788.

DOI: https://doi.org/10.1016/j.wear.2008.11.023

[15] Kukutschova, J.; Roubicek, V.; Malachova, K.; Pavlickova, Z.; Holusa, R.; Kubackova, J.; Micka, V.; MacCrimmon, D.; Filip, P. Wear mechanism in automotive brake materials, wear debris and its potential environmental impact. Wear, 267 (2009).

DOI: https://doi.org/10.1016/j.wear.2009.01.034

[16] Verma, P.; Menapace, L.; Bonfanti, A.; Ciudin, R.; Gialanella, S.; Straffelini, G. Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear, 322-323 (2015) 251–258.

DOI: https://doi.org/10.1016/j.wear.2014.11.019

[17] Hamida, M.K.; Stachowiak G.W.; Syahrullail S. The Effect of External Grit Particle Size on Friction Coefficients and Grit Embedment of Brake Friction Material. Procedia Engineering, 68 (2013) 7 – 11.

DOI: https://doi.org/10.1016/j.proeng.2013.12.138

[18] Leonardia, M.; Menapacea, C.; Matějka, V.; Gialanellaa, S.; Straffelinia, G. Pin-On-Disc Investigation On Copper-Free Friction Materials Dry Sliding Against Cast Iron. Tribology International, 10 (2017) 28-37.

DOI: https://doi.org/10.1016/j.triboint.2017.10.037

[19] Nosko, O.; Borrajo-Pelaez, R.; Hedström, P.; Olofsson, U. Porosity and shape of airborne wear microparticles generated by sliding contact between a low metallic friction material and a cast iron. Journal of Aerosol Science, 7 (2017) 1-15.

DOI: https://doi.org/10.1016/j.jaerosci.2017.07.015

[20] Kukutschová, J.; Roubíˇcek, V.; Malachová, K.; Pavlíˇcková, Z.; Holuˇsa, R.; Kubaˇcková, J.; Miˇcka, V.; MacCrimmon, D.; Filip, P. Wear mechanism in automotive brake materials, wear debris and its potential environmental impact. Wear, 267 (2009).

DOI: https://doi.org/10.1016/j.wear.2009.01.034

[21] Rowson, D. The chrysotile content of the wear debris of brake linings. Wear, 47 (1978) 315 – 321.

DOI: https://doi.org/10.1016/0043-1648(78)90161-8

[22] EL-Tayeb, N.; Liew K. On the dry and wet sliding performance of potentially new frictional brake pad materials for automotive industry. Wear, 266 (2009) 275–287.

DOI: https://doi.org/10.1016/j.wear.2008.07.003

[23] Mirzababaei, S.; Filip, P. Impact of humidity on wear of automotive friction materials. Wear, 376-377 (2017) 717–726.

DOI: https://doi.org/10.1016/j.wear.2017.02.020

[24] Mutlu, I.; Oner, C.; Findik, F. Boric acid effect in phenolic composites on tribological properties in brake linings. Materials and Design, 28 (2007) 480–487.

DOI: https://doi.org/10.1016/j.matdes.2005.09.002

[25] Lee, W.; Jang, Ho. Moisture effect on velocity dependence of sliding friction in brake friction materials. Wear, 306 (2013) 17–21.

DOI: https://doi.org/10.1016/j.wear.2013.06.027

[26] Zhuan L.; Peng X.; Xiang X.; Su-hua Z. Tribological characteristics of C/C-SiC braking composites under dry and wet conditions. Transaction Nonferrous Material Society China, 18 (2008) 1071-1075.

DOI: https://doi.org/10.1016/s1003-6326(08)60183-1

[27] Leonardia, M.; Menapacea, C.; Matějka, V.; Gialanellaa, S; Straffelinia, G. Pin-On-Disc Investigation On Copper-Free Friction Materials Dry Sliding Against Cast Iron. Tribology International, 10(2017) 21-37.

DOI: https://doi.org/10.1016/j.triboint.2017.10.037

[28] Hee, K.; Filip, P. Performance of ceramic enhanced phenolic matrix brake lining materials for automotive brake linings. Wear, 259 (2005) 1088–1096.

DOI: https://doi.org/10.1016/j.wear.2005.02.083

[29] Sai Balaji, M. A.; Kalaichelvan, K. Optimization of a Semi-metallic disc brake pad formulation with respect to friction and wear. Procedia Engineering (2012) 1650 – 1657.

DOI: https://doi.org/10.1016/j.proeng.2012.06.201

[30] Bijwe, J.; Kumar, M.; Gurunath, P.V.; Desplanques, Y.; Degallaix, G. Optimization of brass contents for best combination of tribo-performance and thermal conductivity of non-asbestos organic (NAO) friction composites. Wear, 265 (2008) 699–712.

DOI: https://doi.org/10.1016/j.wear.2007.12.016

[31] Virta, R. Asbestos: Geology, Mineralogy, Mining, and Uses. Open-File Report U.S. Department Of The Interior U.S. Geological Survey, (1999).

DOI: https://doi.org/10.3133/ofr02149

[32] Yiannoulakis, H. Brake Lining: Technical Note. Research and Development Center, Gresian Magnesite, (2015) 1-3.

[33] Ibhadode, A.; Dagwa, I. Development of Asbestos-Free Friction Lining Material from Palm Kernel Shell. Journal of the Brazilian Society of Mechanical Science & Engineering, (2008) 166-173.

DOI: https://doi.org/10.1590/s1678-58782008000200010

[34] Yawas, D.S.; Aku, S.Y.; Amaren, S.G. Morphology and properties of periwinkle shell asbestos-free brake pad. Journal of King Saud University–Engineering Sciences, (2016) 103–109.

DOI: https://doi.org/10.1016/j.jksues.2013.11.002

[35] Aigbodion, V. S.; Akadike, U.; Hassan, S.B.; Asuke, F.; Agunsoye, J.O. Development of Asbestos -Free Brake Pad Using Bagasse. Tribology in industry, (2010) 12-18.

[36] Ramazzini, C. Asbestos Is Still with Us: Repeat Call for a Universal Ban. Report submitted to Bologna Italy (2010).

[37] Lee, W.; Jang, H. Moisture effect on velocity dependence of sliding friction in brake friction materials. Wear, 306 (2013) 17–21.

DOI: https://doi.org/10.1016/j.wear.2013.06.027

[38] Ficici F.; Durat M.; Kapsiz M. Optimization of tribological parameters for a brake pad using Taguchi design method. Journal of Brazillian Society Mechanical Science and Engineering, 36 (2014) 653–659.

DOI: https://doi.org/10.1007/s40430-013-0115-x

[39] Ho, S.C.; Chern Lin, J.H.; Ju, C.P. Effect of carbonization on mechanical and tribological behaviour of a copper–phenolic-based friction material. Carbon, 43 (2005) 491–502.

DOI: https://doi.org/10.1016/j.carbon.2004.09.028

[40] Bijwe, J.; Kumar M. Optimization of steel wool contents in non-asbestos organic (NAO) friction composites for best combination of thermal conductivity and tribo-performance. Wear, 263 (2007) 1243–1248.

DOI: https://doi.org/10.1016/j.wear.2007.01.125

[41] Mahale, V.; Bijwe, J.; Sinha, S. Application and comparative study of new optimization method for performance ranking of friction materials. Journal of tribology (2017) 1-12.

[42] Fei, J.; Li, H.; Qi, Le-Hua; Fu, Y.; Li, X. Carbon-Fiber Reinforced Paper-Based Friction Material: Study on Friction Stability as a Function of Operating Variables. Journal of Tribology, 130 (2008) 1-7.

DOI: https://doi.org/10.1115/1.2966388

[43] Fei, J.; Luo, D.; Zhang, C.; Li, H; Cui, Y.; Huang, J. Friction and wear behaviour of SiC particles deposited onto paper-based friction material via electrophoretic deposition. Tribology International, 119 (2018) 230–238.

DOI: https://doi.org/10.1016/j.triboint.2017.11.003

[44] Halberstadt, M. L.; Rhee, S. K.; Mansfield, J. A. Effects of potassium titanate fiber on the wear of automotive brake linings. Wear, 46 (1978) 109 – 126.

DOI: https://doi.org/10.1016/0043-1648(78)90114-x

[45] Blau, P. J.; Jolly, B. Wear of truck brake lining materials using three different test methods. Wear, 259 (2005) 1022–1030.

DOI: https://doi.org/10.1016/j.wear.2004.12.022

[46] Spurr, R. T. Fillers in friction material. Wear, 22 (1972) 1-10.

[47] Xiao, X.; Yin, Y.; Bao, J.; Lu, L.; Feng, X. Review on the friction and wear of brake materials. Advances in Mechanical Engineering, 8 (2016) 1-10.

[48] Idris, U.D.; Aigbodion, V.S.; Abubakar, I.J.; Nwoye, C.I. Eco-friendly asbestos free brake-pad: Using banana peels. Journal of King Saud University – Engineering Sciences, 27 (2015) 185–192.

DOI: https://doi.org/10.1016/j.jksues.2013.06.006

[49] Guan, Q. F.; Li, G. Y.; Wang, H. Y.; An, J. Friction-wear characteristics of carbon fiber reinforced friction material. Journal of Materials Science, 39 (2004) 641– 643.

DOI: https://doi.org/10.1023/b:jmsc.0000011520.48580.fc

[50] Virta R. Asbestos: Geology, Mineralogy, Mining, and Uses. Open-File Report U.S. Department Of The Interior U.S. Geological Survey (1999).

DOI: https://doi.org/10.3133/ofr02149

[51] Ramazzini, C. Asbestos Is Still with Us: Repeat Call for a Universal Ban. Report submitted to Bologna Italy (2010) 1-14.

[52] Chan, D.; Stachowiak G. Review of automotive brake friction materials. Proceedia Instrumentation for Mechanical Engineers Part D: Journal of Automobile Engineering, 218 (2004) 953-965.

DOI: https://doi.org/10.1243/0954407041856773

[53] Ibhadode, A. O. A.; Dagwa, I. M. Development of Asbestos-Free Friction Lining Material from Palm Kernel Shell. Journal of the Brazilian Society of Mechanical Science & Engineering (2008) 166-173.

DOI: https://doi.org/10.1590/s1678-58782008000200010

[54] Darius, G.S.; Berhan, M.N.; David, N. V.; Shahrul, A. A.; Zaki, M. B. Characterization of brake pad friction materials. WIT Transactions on Engineering Sciences 51 (2005) 42-50.

[55] Erdinc, M.; Erdinc, E.; Cok, G.; Polatli, M. Respiratory impairment due to asbestos exposure in brake-lining workers. Environmental Research, 91 (2003) 151–156.

DOI: https://doi.org/10.1016/s0013-9351(02)00063-4

[56] Kumar, M.; Bijwe, J. Optimized selection of metallic fillers for best combination of performance properties of friction materials: A comprehensive study. Wear, 303 (2013) 569–583.

DOI: https://doi.org/10.1016/j.wear.2013.03.053

[57] Blau, P. J. Compositions, Functions, and Testing of Friction Brake Materials and Their Additives. Report prepared for U.S. Department of Energy, (2001).

[58] Berry, G; Newhouse, M. L. Mortality of workers manufacturing friction materials using asbestos. British Journal of Industrial Medicine, 40 (1983) 1-7.

[59] Jacko, M. G.; Tsang, P. H. S.; Rhee, S. K. Automotive friction materials evolution during the past decade. Wear, 100 (1984) 503 – 515.

DOI: https://doi.org/10.1016/0043-1648(84)90029-2

[60] Osterle, W.; Urban, I. Friction layers and friction films on PMC brake pads. Wear, 257 (2004) 215–226.

DOI: https://doi.org/10.1016/j.wear.2003.12.017

[61] Liew, K.W.; Nirmal, Umar. Frictional performance evaluation of newly designed brake pad materials. Materials and Design, 48 (2013) 25–33.

DOI: https://doi.org/10.1016/j.matdes.2012.07.055

[62] Chang, Y.; Joo, B.; Lee, S.; Jang, H. Size effect of tire rubber particles on tribological properties of brake friction materials. Wear, 10 (2017) 101-110.

DOI: https://doi.org/10.1016/j.wear.2017.10.004

[63] Satapathy, K.; Bijwe, j. Fade and Recovery Behavior of Non-Asbestos Organic (NAO) Composite Friction Materials based on Combinations of Rock Fibers and Organic Fibers. Journal of Reinforced Plastics and Composites, 24 (2005) 563-577.

DOI: https://doi.org/10.1177/0731684405043561

[64] Singh, T.; Patnaik, A.; Chauhan, R.; Rishiraj, A. Assessment of braking performance of lapinus–wollastonite fibre reinforced friction composite materials. Journal of King Saud University – Engineering Sciences (2015) 1-8.

DOI: https://doi.org/10.1016/j.jksues.2015.06.002

[65] Qin, Q.D.; Zhao, Y.G.; Zhou, W. Dry sliding wear behavior of Mg2Si/Al composites against automobile friction material. Wear, 264 (2008) 654–661.

DOI: https://doi.org/10.1016/j.wear.2007.05.008

[66] Menapace, C.; Leonardi, M.; Perricone, G.; Bortolotti, M.; Straffelini, G.; Gialanella, S. Pin-on-disc study of brake friction materials with ball-milled nanostructured components. Materials and Design, 115 (2017) 287–298.

DOI: https://doi.org/10.1016/j.matdes.2016.11.065

[67] Singh, T.; Patnaik, A.; Gangil, B.; Chauhan, R. Optimization of tribo-performance of brake friction materials: Effect of nano filler. Wear, 324 (2015) 10–16.

DOI: https://doi.org/10.1016/j.wear.2014.11.020

[68] Shin, M. W.; Cho, K. H.; Lee, W. K.; Jang, H. Tribological Characteristics of Binder Resins for Brake Friction Materials at Elevated Temperatures. Tribology Letters, 38 (2010) 161–168.

DOI: https://doi.org/10.1007/s11249-010-9586-4

[69] Ma, Y.; Liu, Y.; Shang, W.; Gao, Z.; Wang, H.; Guoab, L.; Tong, J. Tribological and mechanical properties of pine needle fiber reinforced friction composites under dry sliding conditions. Royal Society of Chemistry Advances, 4 (2014) 36777–36783.

DOI: https://doi.org/10.1039/c4ra06717g

[70] Park, J.; Chung, J.; Kim, H. Friction characteristics of brake pads with aramid fiber and acrylic fiber. Industrial Lubrication and Tribology, (2010) 91–98.

DOI: https://doi.org/10.1108/00368791011025638

[71] Aranganathan, N.; Bijwe, J. Development of Copper-free Eco-Friendly Brake-Friction Material using Novel Ingredients. Wear, (2016) 1-25.

DOI: https://doi.org/10.1016/j.wear.2016.01.023

[72] Leonardia, M.; Menapacea, C.; Matějka, V.; Gialanella, S.; Straffelinia, G. Pin-On-Disc Investigation On Copper-Free Friction Materials Dry Sliding Against Cast Iron. Tribology International, 10 (2017) 21-37.

DOI: https://doi.org/10.1016/j.triboint.2017.10.037

[73] Gopal, P.; Dharani, L.R.; Frank, D. Blum. Hybrid phenolic friction composites containing Kevlar pulp Part II-wear surface characteristics. Wear, 193 (1996) 180-185.

DOI: https://doi.org/10.1016/0043-1648(95)06709-4

[74] Mohanty, S.; Chugh, Y.P. Development of fly ash-based automotive brake lining. Tribology International, 40 (2007) 1217–1224.

DOI: https://doi.org/10.1016/j.triboint.2007.01.005

[75] Arrangnathan, N.; Bijwe, J. Fiber-Surface Quality Enhancement to Improve the Performance Properties of Friction Materials. Journal of Tribology, 139 (2017) 1-9.

DOI: https://doi.org/10.1115/1.4035477

[76] Xie, F.; Hu, W.; Ning, D.; Zhuo, L.; Deng, J.; Lu Z. ZnO nanowires decoration on carbon fiber via hydrothermal synthesis for paper-based friction materials with improved friction and wear properties. Ceramics International, 11 (2017) 215-224.

DOI: https://doi.org/10.1016/j.ceramint.2017.11.224

[77] Abadi S.; Khavandi, A.; Kharazi, Y. Effects of Mixing the Steel and Carbon Fibers on the Friction and Wear Properties of a PMC Friction Material. Applied Composite Materials, 17 (2010) 151–158.

DOI: https://doi.org/10.1007/s10443-009-9115-5

[78] Wang, F.; Liu, Y. Mechanical and tribological properties of ceramic-matrix friction materials with steel fiber and mullite fiber. Materials and Design, 57 (2014) 449–455.

DOI: https://doi.org/10.1016/j.matdes.2014.01.017

[79] Satapathy, B.; Bijwe, J. Composite friction materials based on organic fibres: Sensitivity of friction and wear to operating variables. Composites: Part A, 37 (2006) 1557–1567.

DOI: https://doi.org/10.1016/j.compositesa.2005.11.002

[80] Ozturk, B.; Arslan, F.; Ozturk S. Effects of Different Kinds of Fibers on Mechanical and Tribological Properties of Brake Friction Materials. Tribology Transactions, 56 (2013) 536-545.

DOI: https://doi.org/10.1080/10402004.2013.767399

[81] Sellami, A.; Kchaou, M.; Elleuch R.; Cristol, A.; Desplanques, Y. Study of the interaction between microstructure, mechanical and tribo-performance of a commercial brake lining material. Materials and Design, 59 (2014) 84–93.

DOI: https://doi.org/10.1016/j.matdes.2014.02.025

[82] Bark, S.; Moran, D.; Percival, S. J. Polymer changes during friction material performance. Wear, 41 (1977) 309 – 314.

DOI: https://doi.org/10.1016/0043-1648(77)90010-2

[83] Gurunath, P.V.; Bijwe, J. Friction and wear studies on brake-pad materials based on newly developed resin. Wear, 263 (2007) 1212–1219.

DOI: https://doi.org/10.1016/j.wear.2006.12.050

[84] Nidhi; Bijwe, J. NBR-modified Resin in Fade and Recovery Module in Non-asbestos Organic (NAO) Friction Materials. Tribology Letters, 27 (2007) 189–196.

DOI: https://doi.org/10.1007/s11249-007-9225-x

[85] Fu, Z.; Suo, B.; Yun R.; Lu Y.; Wang, H; Qi, S.; Jiang, S.; Lu, Y.; Matejka, V. Development of eco-friendly brake friction composites containing flax fibres. Journal of Reinforced Plastics and Composites, 31 (2012) 681–689.

DOI: https://doi.org/10.1177/0731684412442258

[86] Lee, E. J.; Hwang, H. J.; Lee, W. G.; Cho, K. H.; Jang, H. Morphology and Toughness of Abrasive Particles and Their Effects on the Friction and Wear of Friction Materials: A Case Study with Zircon and Quartz. Tribology Letters, 37 (2010) 637–644.

DOI: https://doi.org/10.1007/s11249-009-9561-0

[87] Cui, G.; Ren, J.; Lu, Z. The Microstructure and Wear Characteristics of Cu–Fe Matrix Friction Material with Addition of SiC. Tribology Letters, 65 (2017) 100-108.

[88] Bijwe, J.; Aranganathan, N.; Sharma S.; Dureja, N.; Kumar, R. Nano-abrasives in friction materials-influence on tribological properties. Wear, 296 (2012) 693–701.

DOI: https://doi.org/10.1016/j.wear.2012.07.023

[89] Kachhap, R.; Satapathy B. Synergistic effect of tungsten disulfide and cenosphere combination on braking performance of composite friction materials. Materials and Design, 56 (2014) 368–378.

DOI: https://doi.org/10.1016/j.matdes.2013.11.006

[90] Ozturk, B.; Ozturk, S. Effects of Resin Type and Fibre Length on the Mechanical and Tribological Properties of Brake Friction Materials. Tribology Letters, 42 (2011) 339–350.

DOI: https://doi.org/10.1007/s11249-011-9779-5

[91] Osterle, W.; Dmitriev, A. The Role of Solid Lubricants for Brake Friction Materials. Lubricant, (2016) 1-22.

[92] Aranganathan, N.; Bijwe, J.; Special grade of graphite in NAO friction materials for possible Replacement of copper. Wear, (2014) 1-9.

DOI: https://doi.org/10.1016/j.wear.2014.12.037

[93] Mutlu, I.; Eldogan, O.; Findik, F. Tribological properties of some phenolic composites suggested for automotive brakes. Tribology International, 39 (2006) 317–325.

DOI: https://doi.org/10.1016/j.triboint.2005.02.002

[94] Bassoli, E.; Atzeni, E.; Iuliano, L. Grinding Micro-mechanisms of a Sintered Friction Material. Journal of Manufacturing Science and Engineering, 133 (2011) 1-6.

DOI: https://doi.org/10.1115/1.4003336

[95] Gopal, P.; Dharani, L.R.; Blum, F. Load, speed and temperature sensitivities of a carbon-fiber reinforced phenolic friction material. Wear, (1995) 913-921.

DOI: https://doi.org/10.1016/0043-1648(95)90215-5

[96] Kim, S.; Kim, K.; Jang, Ho. Optimization of manufacturing parameters for a brake lining using Taguchi method. Journal of Materials Processing Technology, (2003) 202–208.

DOI: https://doi.org/10.1016/s0924-0136(03)00159-6

[97] Aleksendric, D.; Senatore, A. Optimization of manufacturing process effects on brake friction material wear. Journal of Composite Materials, 46 (2012) 2777–2791.

DOI: https://doi.org/10.1177/0021998311432489

[98] Qi, S., Fu, Z.; Yun, R.; Jiang, S.; Zheng, X.; Lu, Y.; Matejka, V.; Kukutschova, J.; Peknikova, V.; Prikasky, M. Effects of walnut shells on friction and wear performance of eco-friendly brake friction composites. Journal of Engineering Tribology, 228 (2014).

DOI: https://doi.org/10.1177/1350650113517112

[99] Ikpambese, K.K.; Gundu, D.T.; Tuleun, L.T. Evaluation of palm kernel fibres (PKF) for production of asbestos-free automotive brake pads. Journal of King Saud University – Engineering Sciences, (2014) 1-9.

DOI: https://doi.org/10.1016/j.jksues.2014.02.001

[100] Boz, M.; Kurt A. Effect of ZrSiO4 on the Friction Performance of Automotive Brake Friction Materials. Journal of Material Science and Technology, 23 (2007) 843-350.

[101] Kumar, M.; Bijwe, J. NAO friction materials with various metal powders: Tribological evaluation on full-scale inertia dynamometer. Wear, 269 (2010) 826–837.

DOI: https://doi.org/10.1016/j.wear.2010.08.011

[102] Cai, P.; Wang Y.; Wang, T.; Wang, Q. Improving tribological behaviors of friction material by mullite. Tribology International, (2016) 282–288.

[103] Lee, K.; Lee, S.; Jang, J.; Cheng, H. Effect of sol–gel boehmite infiltration on tribological and mechanical behavior of brake lining materials. Wear, 264 (2008) 337–348.

DOI: https://doi.org/10.1016/j.wear.2007.03.025

[104] Aleksendric, D. Neural network prediction of brake friction materials wear. Wear, 268 (2010) 117–125.

DOI: https://doi.org/10.1016/j.wear.2009.07.006

[105] Figi, R.; Nagel, O.; Tuchschmid, M.; Lienemann, P.; Gfeller, U.; Bukowiecki, N. Quantitative analysis of heavy metals in automotive brake linings: A comparison between wet-chemistry based analysis and in-situ screening with a handheld X-ray fluorescence spectrometer. Analytica Chimica Acta, 676 (2010).

DOI: https://doi.org/10.1016/j.aca.2010.07.031

[106] Solomon, D.; Berhan, M. Characterization of Friction Material Formulations for Brake Pads. Proceedings of the World Congress on Engineering, (2007) 17-25.

[107] Barros, L.Y.; Neis, P.D.; Ferreira, N.F.; Pavlak, R.P.; Masotti, D.; Matozo, L.T.; Sukumaran, J.; DeBaets, P.; Ando, M. Morphological analysis of pad–disc system during braking operations. Wear, 352-353 (2016) 112–121.

DOI: https://doi.org/10.1016/j.wear.2016.02.005

[108] Straffelini, G.; Ciudin, R.; Ciotti, A.; Gialanella, S. Present knowledge and perspectives on the role of copper in brake materials and related environmental issues: A critical assessment. Environmental Pollution, 207 (2015) 211-219.

DOI: https://doi.org/10.1016/j.envpol.2015.09.024

[109] Vijay, R.; Janesh, M.; Saibalaji, M. A.; Thiyagarajan, V. Optimization of Tribological Properties of Nonasbestos Brake Pad Material by Using Steel Wool. Advances in Tribology, 15 (2013) 1-9.

DOI: https://doi.org/10.1155/2013/165859

[110] Ozturk, B.; Mutlu, T. Effects of Zinc Borate and Fly Ash on the Mechanical and Tribological Characteristics of Brake Friction Materials. Tribology Transactions, 59 (2016) 622–631.

DOI: https://doi.org/10.1080/10402004.2015.1096984

[111] Mustafa, A.; Abdollah, M.F.B.; Ismail, N.; Amiruddin, H.; Umehara, N. Materials selection for eco-aware lightweight friction material. Mechanics & Industry, 15 (2014) 279–285.

DOI: https://doi.org/10.1051/meca/2014039

[112] Wang, Z.; Hou, G.; Yang, Z.; Jiang, Q.; Zhang, F.; Xie, M.; Yao, Z. Influence of slag weight fraction on mechanical, thermal and tribological properties of polymer based friction materials. Materials and Design, 90 (2016) 76–83.

DOI: https://doi.org/10.1016/j.matdes.2015.10.097

[113] Kato, T.; Magario, A. The Wear of Aramid Fiber Reinforced Brake Pads: The Role of Aramid Fibers. Tribology transactions, 37 (1994) 559-565.

DOI: https://doi.org/10.1080/10402009408983329

[114] Nidhi; Bijwe, J. NBR-modified Resin in Fade and Recovery Module in Non-asbestos Organic (NAO) Friction Materials. Tribology Letters, 27 (2007) 189–196.

DOI: https://doi.org/10.1007/s11249-007-9225-x

[115] Saffar, A.; Shojaei, A.; Arjmand, M. Theoretical and experimental analysis of the thermal, fade and wear characteristics of rubber-based composite friction materials. Wear, 269 (2010) 145–151.

DOI: https://doi.org/10.1016/j.wear.2010.03.021

[116] Ozturk, B.; Ozturk, S.; Zel, A. Effect of Type and Relative Amount of Solid Lubricants and Abrasives on the Tribological Properties of Brake Friction Materials. Tribology Transactions, 56 (2013) 428-441.

DOI: https://doi.org/10.1080/10402004.2012.758333

[117] Jang, H.; Kim, S. The effects of antimony trisulfide Sb S and zirconium silicate ZrSiO in the automotive brake friction material on friction characteristics. Wear, 239 (2000) 229-236.

DOI: https://doi.org/10.1016/s0043-1648(00)00314-8

[118] Matejka, V.; Fu, Z.; Kukutschova, J.; Qi, S.; Jiang, S; Zhang, X.; Yun, R.; Vaculik, M.; Heliova, M.; Lu, Y. Jute fibers and powderized hazelnut shells as natural fillers in non-asbestos organic non-metallic friction composites. Materials and Design, 51 (2013).

DOI: https://doi.org/10.1016/j.matdes.2013.04.079