Experimental Investigation and Optimization of Direct Metal Laser Sintered CL50WS Material Using Desirability Function Approach


Article Preview

The aim of the this study to determine optimal process parameter for the hardness of direct metal laser sintering (DMLS) process as the hardness plays a significant role in to DMLS made components and die or mould. In this manner, research is focused around determining the effect of process parameters like laser power, scanning speed, layer thickness and hatch spacing on the hardness of CL50WS (maraging18Ni300 steel) material. A response surface methodology based numerical model was proposed to predict hardness, and the adequacy of the created model was checked through the analysis of variance technique. Additionally, optimized conditions were set up to maximize the hardness through the desirability function theory.



Edited by:

Dr. Stanislav Kolisnychenko




H. M. Gajera et al., "Experimental Investigation and Optimization of Direct Metal Laser Sintered CL50WS Material Using Desirability Function Approach", Advanced Materials Research, Vol. 1150, pp. 43-58, 2018

Online since:

November 2018




* - Corresponding Author

[1] A. Simchi, F. Petzoldt, and H. Pohl, On the development of direct metal laser sintering for rapid tooling,, J. Mater. Process. Technol., vol. 141, no. 3, p.319–328, (2003).

DOI: https://doi.org/10.1016/s0924-0136(03)00283-8

[2] N. P. Karapatis, Direct rapid tooling: a review of current research,, Compr. Mater. Process., vol. 10, no. 2, p.303–344, (1998).

[3] T. H. Becker and Di. DImitrov, The achievable mechanical properties of SLM produced Maraging Steel 300 components,, Rapid Prototyp. J., (2016).

DOI: https://doi.org/10.1108/rpj-08-2014-0096

[4] R. A. R. Bineli, A. P. G. Peres, A. L. Jardini, and R. Maciel Filho, Direct Metal Laser Sintering (DMLS): Technology for Design and Construction of Microreactors,, 6th Brazilian Conf. Manuf. Eng., p.1–7, (2011).

[5] G. Casalino, S. L. Campanelli, N. Contuzzi, and a.D. Ludovico, Experimental investigation and statistical optimisation of the selective laser melting process of a maraging steel,, Opt. {&} Laser Technol., vol. 65, p.151–158, (2015).

DOI: https://doi.org/10.1016/j.optlastec.2014.07.021

[6] J. A. M. Ferreira, L. M. S. Santos, J. da Silva, J. M. Costa, and C. Capela, Assessment of the fatigue life on functional hybrid laser sintering steel components,, Procedia Struct. Integr., (2016).

DOI: https://doi.org/10.1016/j.prostr.2016.02.018

[7] E. Yasa, J. Deckers, J.-P. Kruth, M. Rombouts, and J. Luyten, Charpy impact testing of metallic selective laser melting parts,, Virtual Phys. Prototyp., (2010).

DOI: https://doi.org/10.1080/17452751003703894

[8] K. Kempen, E. Yasa, L. Thijs, J. P. Kruth, and J. Van Humbeeck, Microstructure and mechanical properties of selective laser melted 18Ni-300 steel,, in Physics Procedia, (2011).

DOI: https://doi.org/10.1016/j.phpro.2011.03.033

[9] J. Suryawanshi, K. G. Prashanth, and U. Ramamurty, Tensile, fracture, and fatigue crack growth properties of a 3D printed maraging steel through selective laser melting,, J. Alloys Compd., vol. 725, p.355–364, (2017).

DOI: https://doi.org/10.1016/j.jallcom.2017.07.177

[10] C. Sanz and V. García Navas, Structural integrity of direct metal laser sintered parts subjected to thermal and finishing treatments,, J. Mater. Process. Technol., (2013).

[11] F. Cajner, D. Landek, and V. Leskov Surface modifications of maraging steels used in the manufacture of moulds and dies , journal of Materials and technology 44:85–91,(2010).

[12] Y. Bai, Y. Yang, D. Wang, and M. Zhang, Influence mechanism of parameters process and mechanical properties evolution mechanism of maraging steel 300 by selective laser melting,, Mater. Sci. Eng. A, (2017).

DOI: https://doi.org/10.1016/j.msea.2017.06.033

[13] F. Klocke, K. Arntz, M. Teli, K. Winands, M. Wegener, and S. Oliari, State-of-the-art Laser Additive Manufacturing for Hot-work Tool Steels,, Procedia CIRP, vol. 63, p.58–63, (2017).

DOI: https://doi.org/10.1016/j.procir.2017.03.073

[14] M. Krishnan et al., On the effect of process parameters on properties of AlSi10Mg parts produced by DMLS,, Rapid Prototyp. J., vol. 20, no. 6, p.449–458, (2014).

[15] N. Kumar, H. Kumar, and J. S. Khurmi, Experimental Investigation of Process Parameters for Rapid Prototyping Technique (Selective Laser Sintering) to Enhance the Part Quality of Prototype by Taguchi Method,, Procedia Technol., vol. 23, p.352–360, (2016).

DOI: https://doi.org/10.1016/j.protcy.2016.03.037

[16] M. Hussain, V. Mandal, V. Kumar, A. K. Das, and S. K. Ghosh, Development of TiN particulates reinforced SS316 based metal matrix composite by direct metal laser sintering technique and its characterization,, Opt. Laser Technol., vol. 97, p.46–59, (2017).

DOI: https://doi.org/10.1016/j.optlastec.2017.06.006

[17] S. A. Krishnan and G. L. Samuel, Multi-objective optimization of material removal rate and surface roughness in wire electrical discharge turning,, p.2021–2032, (2013).

DOI: https://doi.org/10.1007/s00170-012-4628-8

[18] S. Kirboga and M. Öner, Application of experimental design for the precipitation of calcium carbonate in the presence of biopolymer,, Powder Technol., (2013).

DOI: https://doi.org/10.1016/j.powtec.2013.07.015

[19] ASTM E18-15, Standard Test Methods for Rockwell Hardness of Metallic Materials,, ASTM Int., p.1–38, (2015).

[20] E. J. Martinez-Conesa, J. A. Egea, V. Miguel, C. Toledo, and J. L. Meseguer-Valdenebro, Optimization of geometric parameters in a welded joint through response surface methodology,, Constr. Build. Mater., vol. 154, p.105–114, (2017).

DOI: https://doi.org/10.1016/j.conbuildmat.2017.07.163

[21] M. Almeida, R. Erthal, E. Padua, L. Silveira, and L. Am, Talanta Response surface methodology ( RSM ) as a tool for optimization in analytical chemistry,, vol. 76, p.965–977, (2008).

DOI: https://doi.org/10.1016/j.talanta.2008.05.019

[22] A. Singh, S. Datta, and S. S. Mahapatra, Application of TOPSIS in the Taguchi Method for Optimal Machining Parameter Selection,, J. Manuf. Sci. Prod., vol. 11, no. 1–3, p.49–60, (2011).

[23] S. Singh, V. S. Sharma, and A. Sachdeva, Application of response surface methodology to analyze the effect of selective laser sintering parameters on dimensional accuracy,, Prog. Addit. Manuf., vol. 0, no. 0123456789, (2018).

DOI: https://doi.org/10.1007/s40964-018-0049-z

[24] J. Zolgharnein, A. Shahmoradi, and J. B. Ghasemi, Comparative study of Box-Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (II) adsorption onto Robinia tree leaves,, J. Chemom., vol. 27, no. 1–2, p.12–20, (2013).

DOI: https://doi.org/10.1002/cem.2487