Wood Constructions for Sustainable Building Renovation


Article Preview

This paper discusses the potentials of different wood constructions for the renovation and extension of existing buildings for sustainable urban renewal. The renovation and extension of existing buildings with wood constructions can contribute significantly to sustainable urban redevelopment. The renovation of building envelopes, such as façades and roofs, with highly insulated wooden components, can reduce the transmission heat losses and related heating energy demand of existing buildings significantly. The extension of existing buildings contributes to the redensification of urban areas and can create synergies with the improvement of existing buildings’ performances. The manifold advantages of specific wooden constructions can be related to different aspects, such as construction type and material properties, building execution, design, logistic and sustainability. The results of this research discuss the architectural design and planning relevant properties of specific timber construction types, such as wood frame, cross-laminated timber (CLT), massive timber, and hybrid timber-concrete, considering the properties of different soft (such as spruce) and hard (such as beech) construction timber species. Timber constructions are compared with conventional massive constructions out of concrete and steel. The results confirm the significant advantages of timber constructions regarding all aspects.



Edited by:

Dr. Stanislav Kolisnychenko




T. Schuetze, "Wood Constructions for Sustainable Building Renovation", Advanced Materials Research, Vol. 1150, pp. 67-72, 2018

Online since:

November 2018





* - Corresponding Author

[1] L. Hemphill, S. McGreal, J. Berry, An Indicator-based Approach to Measuring Sustainable Urban Regeneration Performance: Part 2, Empirical Evaluation and Case-study Analysis, Urban Studies 2004, 41, 757-772.

DOI: https://doi.org/10.1080/0042098042000194098

[2] T. Schuetze, L. Chelleri, J.-H. Je, Measuring Urban Redevelopment Sustainability: Exploring Challenges from Downtown Seoul, Sustainability 2016, 9, 40.

DOI: https://doi.org/10.3390/su9010040

[3] M. Green, The impact of wood construction on the ecosystem and global warming, in: 6ème Forum International Bois Construction FBC 2016, forum-holzbau (fhb): Lyon, France, 2016, pp.1-5.

[4] European Commission, Energy Performance of Buildings, in: European Parliament and the Council of the European Union, Directive 2010/31/EU, Brussels, Belgium, 2010; pp.1-23.

[5] T. Boermans, K. Bettgenhäuser, M. Offermann, S. Schimschar, Renovation Tracks for Europe up to 2050, ECOFYS Germany GmbH, Brussels, Belgium, June, (2012).

[6] Buildings Performance Institute Europe (BPIE), Renovating the EU building stock, Information on http://bpie.eu/focus-areas/renovating-the-eu-building-stock/ (accessed16 April 2018).

[7] F. Lattke, Weiterbauen mit Holz, Zuschnitt Zeitschrift über Holz als Werkstoff und Werke in Holz, 2017, 66, 2.

DOI: https://doi.org/10.1007/bf02627601

[8] Bundesinstitut für Bau- Stadt- und Raumforschung (BBSR) im Bundesamt für Bauwesen und Raumordnung (BBR), Potenziale und Rahmenbedingungen von Dachaufstockungen und Dachausbauten, BBSR-Online-Publikation 08/2016, Bonn, July 2016, Bonn, Germany, (2016).

DOI: https://doi.org/10.1007/s13147-013-0227-x

[9] S. Franke, Mechanical Properties of Beech CLT, in: L. Eberhardsteiner, et al., World Conference on Timber Engineering 2016, Vienna University of Technology, Vienna, Austria, 2016, pp.1-7.

[10] W. Willkomm, Wood Construction - Current Developments, Knowledge and Experience Exchange of HafenCity University Hamburg and Aalto University Helsinki, Hamburg, Germany, September (2017).

[11] O. Espinoza, U. Buehlmann, Cross-Laminated Timber in the USA: Opportunity for Hardwoods?, Current Forestry Reports 2018, 4, 12.

DOI: https://doi.org/10.1007/s40725-018-0071-x

[12] D. Walberg, O. Brosius, T. Schulze, A. Cramer, Massiv- und Holzbau bei Wohngebäuden, Arbeitsgemeinschaft für zeitgemäßes Bauen e.V., Kiel, Germany, (2015).

[13] W. Mandl, Projektvergleich Kindergarten - Holzbau hat die Nase vorn, MikadoPlus Themenmagazin für Zimmermeister, September, (2013).

[14] M.H. Ramage, H. Burridge, M. Busse-Wicher, G. Fereday, T. Reynolds, D.U. Shah, G. Wu, L. Yu, P. Fleming, D. Densley-Tingley, J. Allwood, P. Dupree, P.F. Linden, O. Scherman, The wood from the trees: The use of timber in construction, Renewable and Sustainable Energy Reviews 2017, 68, 333-359.

DOI: https://doi.org/10.1016/j.rser.2016.09.107

[15] Holzabsatzfonds, Holzbauhandbuch - Holz als konstruktiver Baustoff, Informationsdienst Holz, Bonn, Germany, (2008).

[16] Studiengemeinschaft Holzleimbau e.V., Holzbau Handbuch - Ergänzungen zu DIN EN 1995-1-2 und DIN EN 1995-1-2/NA (Fassung 2013), Informationsdienst Holz, Wuppertal, Germany, (2014).

[17] Informationsverein Holz e.V., Holzbauten - Ausgewählte BautenAufstockung - Wohnanlage, 22297 Hamburg, Information on http://informationsdienst-holz.de/index.php?id=66&tx_locator_pi1%5bstoreUid%5d=436 (accessed 13 May 2018).

[18] Informationsverein Holz e.V. Holzbauten - Ausgewählte BautenAufstockung - Studio Osterstraße, 20259 Hamburg, Information on http://informationsdienst-holz.de/index.php?id=66&tx_locator_pi1%5BstoreUid%5D=450 (13 May 2018).

[19] J. Hildebrandt, N. Hagemann, D. Thrän, The contribution of wood-based construction materials for leveraging a low carbon building sector in Europe, Sustainable Cities and Society 2017, 34, 405-418.

DOI: https://doi.org/10.1016/j.scs.2017.06.013