Parameters Optimization in SVM Based-On Ant Colony Optimization Algorithm

Abstract:

Article Preview

In this paper ACO (Ant Colony Optimization) algorithm, which is a well-known intelligent optimization method, is applied to selecting parameters for SVM.ACO has the characteristics of positive feedback, parallel mechanism and distributed computation. This paper gives comparison of ACO-SVM, PSO-SVM whose parameters are determined by particle swarm optimization algorithm, and traditional SVM whose parameters are decided through trial and error. The experimental results on real-world datasets show that this proposed method avoids randomness and subjectivity in the traditional SVM. Additionally it is able to gain better parameters which could dedicate to a higher classification accuracy than the PSO-SVM. Results confirm that proposed optimization method is better than the two others.

Info:

Periodical:

Advanced Materials Research (Volumes 121-122)

Edited by:

Donald C. Wunsch II, Honghua Tan, Dehuai Zeng, Qi Luo

Pages:

470-475

DOI:

10.4028/www.scientific.net/AMR.121-122.470

Citation:

X. Y. Liu et al., "Parameters Optimization in SVM Based-On Ant Colony Optimization Algorithm", Advanced Materials Research, Vols. 121-122, pp. 470-475, 2010

Online since:

June 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.