Carbon Nanotubes Grown by Ethanol Catalytic Combustion with an Additive of Thiophene


Article Preview

Combustion method is a simple method to synthesize carbon nanotubes(CNTs), which employs flames of carbon-contained reactant to synthesize CNTs. It has been proved that combustion method is an effective method to synthesize carbon nanotubes and carbon nanofibers. In this paper, we reported the synthesis of CNTs by using ethanol catalytic combustion with an additive of thiophene, which employed ethanol as carbon source and fuel, nitrate as catalyst precursor, stainless steel as substrate, and thiophene as accelerant. Compared with previous reports on the synthesis of CNTs by ethanol catalytic combustion, great yield of CNTs were obtained with adding thiophene in ethanol. The reproducibility of the synthesis of CNTs in the case of adding thiophene in ethanol was greatly improved.



Advanced Materials Research (Volumes 123-125)

Edited by:

Joong Hee Lee




C. L. Wei et al., "Carbon Nanotubes Grown by Ethanol Catalytic Combustion with an Additive of Thiophene", Advanced Materials Research, Vols. 123-125, pp. 627-630, 2010

Online since:

August 2010




[1] Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W. Z. Li and L.X. Qian: Nature Vol. 394 (1998), p.631.

[2] X.P. Zou, H. Abe, T. Shimizu, A. Ando, Y. Nakayama, H. Tokumoto, S.M. Zhu, and H.S. Zhou: Physica E Vol. 24 (2004), p.14.

[3] D.S. Bethune, C.H. Klang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers: Nature Vol. 363 (1993), p.605.

[4] P. Chen, H.B. Zhang, G.D. Lin, Q. Hong and K.R. Tsai: Carbon Vol. 35 (1997), p.1495.

[5] C. Pan and X.R. XU: J Mater Sci Lett Vol. 21 (2002), p.1027.

[6] R.L. Vander Wal, T.M. Ticich and V.E. Curtis: Chem. Phys. Lett. Vol. 323 (2000), p.217.

[7] R.L. Vander Wal, G.M. Berger and T.M. Ticich: Appl. Phys. A Vol. 77 (2003), p.885.

[8] M.D. Diener, N. Nichelson and J.M. Alford: Phys. Chem. B Vol. 104 (2000), p.9615.

[9] R.L. Vander Wal and L.J. Hall: Combust. Flame Vol. 130 (2002), p.27.

[10] Y.L. Liu, Q. Fua and C.X. Pan: Carbon Vol. 43 (2005), p.2264.

[11] J. Cheng, X.P. Zou and L.K. Wang: Solid State Phenomena Vol. 121-123 (2007), p.145.

[12] F. Li, X.P. Zou, J. Cheng, H.D. Zhang and P.F. Ren: Trans. Nonferrous Met. Soc. China Vol. 16 (2006), p.381.

[13] J. Cheng, X.P. Zou, H.D. Zhang, F. Li, P.F. Ren, G. Zhu, Y. Su and M.F. Wang: Nanoscale Res. Lett. Vol. 3 (2008), p.295.

[14] G. Zhu, X.P. Zou, J. Cheng, M.F. Wang and Y. Su: Archives of Metallurgy and Materials Vol. 53 (2008), p.736.

[15] H.M. Cheng, F. Li, G. Su, H.Y. Pan, L.L. He, X. Sun and M.S. Dresselhaus: Appl. Phys. Lett. Vol. 72 (1998), p.3282.

[16] H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai and P.M. Ajayan: Science Vol. 296 (2002), p.884.

[17] H.D. Zhang, X.P. Zou, J. Cheng, F. Li, P.F. Ren, M.F. Wang and G. Zhu: Advance Material Research Vol. 24-25 (2007), p.727.

[18] G.G. Tibbetts, C.A. Bernardo, D.W. Gorkiewicz and R.L. Alig: Carbon Vol. 32 (1994), p.569.

Fetching data from Crossref.
This may take some time to load.