Effect of Pd Nanoparticles on Thermal Degradation Kinetics of iPP/Pd Nanocomposite

Abstract:

Article Preview

Palladium (Pd) nanoparticles were incorporated into free-standing polymer films, where isotactic polypropylene (iPP) was used, by a one-step dry process involving simultaneous vaporization, absorption and reduction schemes of palladium(II) bis(acetylacetonate), Pd(acac)2 at 180oC, used as a precursor. iPP film was exposed to the sublimed Pd(acac)2 vapor in a glass vessel with nitrogen atmosphere heated at 180oC. The exposing time was 30 min and the Pd nanoparticle contents in polymer films were estimated from ash contents in a sample of about 5 mg by pyrolysis of the films at 800 oC for 1 h in an electric furnace of the TGA apparatus under dry argon atmosphere. The sensitivity of the TGA apparatus was 0.2 mg, and thus the minimum content to be measured was 0.004 wt% of a 5 mg sample. The reduced Pd nanoparticles were observed by transmission electron microscope (TEM), and it was found that metal nanoparticles were selectively loaded into the amorphous regions between the lamellae of crystalline polymers having higher melting temperatures than the processing temperature (180 oC). In order to measure the thermal degradation rate, TGA data measured by the heating rates of 5, 10, 15 and 20 oC /min at the nitrogen atmosphere of 200 ml/min. The TGA data was introduced to the Ozawa equation and the degradation activation energy was calculated according to the degradation ratio.

Info:

Periodical:

Advanced Materials Research (Volumes 123-125)

Edited by:

Joong Hee Lee

Pages:

651-654

DOI:

10.4028/www.scientific.net/AMR.123-125.651

Citation:

J. Y. Lee et al., "Effect of Pd Nanoparticles on Thermal Degradation Kinetics of iPP/Pd Nanocomposite", Advanced Materials Research, Vols. 123-125, pp. 651-654, 2010

Online since:

August 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.