Effect of Hardness of Second Phase Particle on Fatigue Crack Growth Behavior of Steels with Hard Second Phase Particle in Soft Ferrite Matrix

Abstract:

Article Preview

K-constant fatigue crack growth (FCG) tests were conducted on low carbon steels with uniformly distributed hard particle with different of pearlite, bainite and martensite in a soft ferrite matrix. The FCG tests by using a single edge cracked tension (SECT) type was performed inside a scanning electron microscope chamber equipped with a servo-hydraulic fatigue machine. During the test, in-situ crack path observation was carried out to identify the crack tip stress shielding phenomena. From the results, influence of hardness of second phase particle on the FCG behavior in Paris regime was systematically investigated. The results revealed that the ferrite-martensite (FM) steel showed significantly higher FCG resistance compared to that of ferrite-pearlite (FP) and ferrite-bainite (FB) steels. The harder second phase particle would be more difficult to be plastically deformed, which would induce higher plastic constrain. This higher plastic constrain may result in significant crack closure effect and stress shielding effect, thereby increasing higher FCG resistance.

Info:

Periodical:

Advanced Materials Research (Volumes 129-131)

Edited by:

Xie Yi and Li Mi

Pages:

775-779

DOI:

10.4028/www.scientific.net/AMR.129-131.775

Citation:

M. S. Mustapa and Y. Mutoh, "Effect of Hardness of Second Phase Particle on Fatigue Crack Growth Behavior of Steels with Hard Second Phase Particle in Soft Ferrite Matrix", Advanced Materials Research, Vols. 129-131, pp. 775-779, 2010

Online since:

August 2010

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.