Chitin/TiO2 Composite for Photocatalytic Degradation of Phenol


Article Preview

Chitin/TiO2 composite was prepared through colloid TiO2 deposited on the chitin by controlling the pH value of the system, while colloid TiO2 was synthesized by the sol–gel method using tetrabutyl titanate as a precursor. The structures and morphologies of the chitin/TiO2 composite were characterized by FT-IR, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The photocatalytic degradation of phenol was investigated by HPLC method. The results revealed that the chitin/ TiO2 composite was an efficient photocatalyst for the degradation of phenol, and 99.2% of the phenol was degraded after 6h under UV light. The TiO2 was adsorbed on the chitin by hydrogen and titanoxane bonds between them. Colloid TiO2 was gradually deposited to form the anatase crystallographic structures, showing 2θ = 25.3, 37.8, 47.8 and 54.6. Such biocompatible photocatalyst might be applied in the field of various phenol pollutants abatement.



Edited by:

Jin-An Wang, Guozhong Cao and José Manuel Domínguez




K. Wan et al., "Chitin/TiO2 Composite for Photocatalytic Degradation of Phenol", Advanced Materials Research, Vol. 132, pp. 105-110, 2010

Online since:

August 2010




[1] H. Li, J. Li and Y. Huo: J. Phys. Chem. B Vol. 110 (2006), p.1559.

[2] B. Iurascu, I. Siminiceanu, D. Vione, M.A. Vicente and A. Gil: Water Res. Vol. 43 (2009), p.1313.

[3] H. Yu, X. Li, X. Quan, S. Chen and Y. Zhang: Environ. Sci. Technol. Vol. 43(2009), p.7849.

[4] H. Al-Ekabi, N. Serpone, E. Pelizzetti, C. Minero, M. A. Fox and R. B. Draper: Langmuir Vol. 5(1989), pp.250-100 phenol concentration(mg/L) time / h.

[5] J. Sabate, M. A. Anderson, H. Kikkawa, M. Edwards and C. G. Hill: J. Catal. Vol. 127(1991), p.167.

[6] J.C. Lee, M.S. Kim and B.W. Kim, Water Res. Vol. 36 (2002), p.1776.

[7] I.N. Martyanov and K.J. Klabunde: J. Catal. Vol. 225 (2004), p.408.

[8] J. Shang, W. Li and Y. Zhu: J. Mol. Catal. A Vol. 202 (2003), p.187.

[10] M. S. Vohra and K. Tanaka, Water Res. Vol. 37 (2003), p.3992.

[11] S. N. Hosseini, S. M. Borghei, M. Vossoughi and N. Taghavinia: Applied Catalysis B: Environmental Vol. 74 (2007), p.53.

[12] G. Crini and P.M. Badot: Prog. Polym. Sci. Vol. 33 (2008), p.399.

[13] K.D. Trimukhe and A.J. Varma: Carbohydr. Polym. Vol. 71 (2008), p.66.

[14] N. Sankararamakrishnan, A. K. Sharma and R. Sanghi: J. Hazardous Materials Vol. 148 (2007), p.353.

[15] Q. Li, H. Su and T. Tan: Biochemical Engineering Journal Vol. 38 (2008), p.212.

[16] Z. Zainal, L.K. Hui, M. Z. Hussein, A. H. Abdullah and I. R. Hamadneh: Journal of Hazardous Materials 164 (2009), p.138.

[17] S. Budavari, M.J. O'Neil, A. Smith, P.E. Heckelman and J.F. Kinneary (Eds. ), The Merck Index, 12th ed. Merck and Co., New Jersey, (1996).

[18] R.W. Matthews: J. Phys. Chem. Vol. 91 (1987), p.3328.

[19] L. Liu, H. Liu, Y. Zhao, Y. Wang, Y. Duan, G. Gao, M. Ge and W. Chen: Environ. Sci. Technol. 42(2008), p.2342.

[20] R. Vinu and G. Madras: Environ. Sci. Technol. Vol. 42(2008), p.913.

[21] E. Kowalska, H. Remita, C. Colbeau-Justin, J. Hupka and J. Belloni: J. Phys. Chem. C Vol. 112 (2008), p.1124.

[22] R.S. Sonawane and M.K. Dongare: Journal of Molecular Catalysis A: Chemical Vol. 243 (2006), p.68.

[24] K. Nagaveni, M. S. Hegde, N. Ravishankar, G. N. Subanna and G. Madras: Langmuir Vol. 20 (2004), p.2900.

[24] Y. Tao, J. Pan, S. Yan, B. Tang and L. Zhu: Materials Science and Engineering B Vol. 138 (2007), p.84.

[25] X. Peng and L. Zhang: Langmuir Vol. 21(2005), p.1091.

[26] Z. Liu, X. Zhang, S. Nishimoto, M. Jin, D. A. Tryk, T. Murakami and A. Fujishima: J. Phys. Chem. C Vol. 112 (2008), p.253.

[27] L.H. Kao, T.C. Hsu , H.Y. Lu: Journal of Colloid and Interface Science Vol. 316 (2007), p.160.

[28] C. E. Zubieta, P. V. Messina, C. Luengo, M. Dennehy, O. Pieroni and P. C. Schulz: J. Hazardous Materials Vol. 152 (2008), p.765.


Fetching data from Crossref.
This may take some time to load.