Ex-Situ Study of Polymeric Syntactic Foams Mechanical Response Under Compression Loading: Effects of Foam Microstructure Using Microtomography Techniques

Abstract:

Article Preview

Syntactic foams are widely used in many impact-absorbing applications and can be employed as sandwich core. To improve their mechanical performances, these composite sandwich structures have to be modelled. This approach requires the characterisation of the foam behaviour. Moreover, the microstructure of the syntactic foam has an influence on its macroscopic behaviour; the foam density, the diameter of the porosities, their distribution in the material have to be taken into account.

Info:

Periodical:

Advanced Materials Research (Volumes 146-147)

Edited by:

Sihai Jiao, Zhengyi Jiang and Jinglong Bu

Pages:

42-62

Citation:

P. Viot et al., "Ex-Situ Study of Polymeric Syntactic Foams Mechanical Response Under Compression Loading: Effects of Foam Microstructure Using Microtomography Techniques", Advanced Materials Research, Vols. 146-147, pp. 42-62, 2011

Online since:

October 2010

Export:

Price:

$38.00

[1] P. Lhuissier, A. Fallet, L. Salvo, Y. Brechet, Quasistatic mechanical behaviour of stainless steel hollow balloon foam: Macroscopic properties and damage mechanisms followed by X-ray tomography, Materials Letters, Volume 63, Issues 13-14, 31 May 2009, Pages 1113-1116, ISSN 0167-577X.

DOI: https://doi.org/10.1016/j.matlet.2008.10.051

[2] S. Gasser, F. Paun, A. C. Y. B., Uniaxial tensile elastic properties of a regular stacking of brazed hollow balloons, Scripta Materialia, 2003, 48, 1617-1623.

DOI: https://doi.org/10.1016/s1359-6462(03)00139-8

[3] H.B. Zeng, S. Pattofatto, H. Zhao, Y. Girard, V. Fascio, Impact behaviour of hollow balloon agglomerates with density gradient, International Journal of Mechanical Sciences, Volume 52, Issue 5, May 2010, Pages 680-688.

DOI: https://doi.org/10.1016/j.ijmecsci.2009.11.012

[4] Hiroyuki Mae, Masaki Omiya, K. K., Effects of strain rate and density on tensile behavior of polypropylene syntactic foam with polymer micro-balloons, Materials Science and Engineering, 2008, 477, 168-178.

DOI: https://doi.org/10.1016/j.msea.2007.05.028

[5] T. -J. Lim, B. Smith, D. L. McDowell, Behavior of a random hollow balloon metal foam, Acta Materialia, Volume 50, Issue 11, 28 June 2002, Pages 2867-2879, ISSN 1359-6454.

DOI: https://doi.org/10.1016/s1359-6454(02)00111-8

[6] A. Tasdemirci, C. Ergonenc, M. Guden, Split Hopkinson pressure bar multiple reloading and modeling of a 316 L stainless steel metallic hollow balloon structure, International Journal of Impact Engineering, Volume 37, Issue 3, March 2010, Pages 250-259, ISSN 0734-743X.

DOI: https://doi.org/10.1016/j.ijimpeng.2009.06.010

[7] V. Marcadon, F. Feyel, Modelling of the compression behaviour of metallic hollow-balloon structures: About the influence of their architecture and their constitutive material's Eq. s, Computational Materials Science, Volume 47, Issue 2, December 2009, Pages 599-610, ISSN 0927-0256.

DOI: https://doi.org/10.1016/j.commatsci.2009.10.002

[8] Deshpande, V. S. Fleck, N. A., High strain rate compressive behaviour of aluminium alloy foams International Journal of Impact Engineering, 2000, 24, 277 - 298.

DOI: https://doi.org/10.1016/s0734-743x(99)00153-0

[9] M. Avalle, G. B. Ibba, A., Mechanical models of cellular solids: Parameters identification from experimental tests, International Journal of Impact Engineering, 2007, 34, 3-27.

DOI: https://doi.org/10.1016/j.ijimpeng.2006.06.012

[10] [PI-10] P. Viot, E. Plougonven D. Bernard, Microtomography on Polypropylene Foam under Dynamic Loading. 3D Analysis of Bead Morphology Evolution. Composites part A, Volume 39, Issue 8, August 2008, Pages 1266-1281.

DOI: https://doi.org/10.1016/j.compositesa.2007.11.014

[11] P. Viot, K. Shankar D. Bernard, Effect of Strain Rate and Density on Dynamic Behaviour of Syntactic Foam, Composite Structures, 2008, 86, 314-327.

DOI: https://doi.org/10.1016/j.compstruct.2008.07.021

[12] Bouix, R.; Viot, P. Lataillade, J. -L., Polypropylene foam behaviour under dynamic loadings: Strain rate, density and microstructure effects, International Journal of Impact Engineering, 2009, 36, 329 - 342.

DOI: https://doi.org/10.1016/j.ijimpeng.2007.11.007

[13] Wadley Douglas C, Tam Man S, Kokitkar Prashant B, Jackson James E, Miller Dennis J. Lactic acid conversion to 2, 3-Pentanedione and acrylic acid over silica-supported sodium nitrate: reaction optimization and identification of sodium lactate as the active catalyst. J Catal 1997; 165(2): 162–71.

DOI: https://doi.org/10.1006/jcat.1997.1484

[14] Dorian K. Balch, John G. O'Dwyer, Graham R. Davis, Carl M. Cady, George T. Gray III and David C. Dunand. Plasticity and damage in aluminium syntactic foams deformed under dynamic and quasi-static conditions. Materials Science and Enginnering A 391 (2005).

DOI: https://doi.org/10.1016/j.msea.2004.09.012

[15] P.K. Rohatgi, J. K. Kim, N. Gupta, Simon Alaraj and A. Daoud. Compressive characteristics of A356/fly ash cenoballoon composites synthesized by pressure infiltration technique. Composites part A/ applied science and manufacturing, 37 (2006).

DOI: https://doi.org/10.1016/j.compositesa.2005.05.047

[16] Jérome Adrien, Eric Maire, Nelly Gimenez and Valérie Sauavant-Moynot. Experimental study of the compression behavior of syntactic foams by in situ X-ray tomography. Acta Materialia, 55 (2007) 1667-1679.

DOI: https://doi.org/10.1016/j.actamat.2006.10.027

[17] Qiang Zhang, Peter D. Lee, Randhir Singh, Gaohui Wu and Trevor C. Lindley. Micro-CT characterization of structural features and deformation behavior of fly ash/aluminium syntactic foam. Acta Materialia, 57 (2009) 3003-3011.

DOI: https://doi.org/10.1016/j.actamat.2009.02.048

[18] Philippe Destuynder, Analyse et traitement des images numériques, Hermes Science Publications, (2006).

[19] Jean-Marc Chassery and Annick Montantvert, Géométrie Discrète en Analyse d'Images, Hermes Science Publications, (1991).

[20] Thorsten M. Buzug, computed tomography from photon statistics to modern cone-beam CT, Springer (2008).

[21] N. Bakhvalov, Méthodes numériques, Traduit du russe, Edition Mir, Moscou, (1984).