Reaction Synthesis and Oxidation Behaviours of Ludwigite


Article Preview

Using ludwigite as raw material, the phase transformation and mass loss rate of ludwigite in the process of oxidizing roasting are investigated by DTA, isothermal TG, scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques. The results showed that magnetite is transformed into hematite, serpentine is decomposed into forsterite at lower temperature (T<700°C). The weight of ludwigite has a small loss below 600°C. The decomposed of szaibelyite dehydrated and formed into suanite about 700°Cis the main reason of causing ludwigite mass losses. By comparing the curves of ludwigite at different temperature from 700 to 900°C, the process of oxidizing roasting can be divided into three phases: characterized by a period of fast weight loss, and then followed by a mass gain. Finally, weight of sample is no longer change with prolongation of time. The final weight loss is 6.062%, 6.658% and 7.442% respectively for test temperature. Suanite can not be decomposed to form B2O3 and volatilized when the temperature of oxidizing roasting is below 1142 °C. It is found by XRD that paigeite and magnoferrite are the most stable composition without deterioration on oxidizing roasting. The experiment results can provide theoretical references for agglomeration and blast furnace smelting of ludwigite.



Advanced Materials Research (Volumes 146-147)

Edited by:

Sihai Jiao, Zhengyi Jiang and Jinglong Bu






R. Liu et al., "Reaction Synthesis and Oxidation Behaviours of Ludwigite", Advanced Materials Research, Vols. 146-147, pp. 475-480, 2011

Online since:

October 2010




In order to see related information, you need to Login.

In order to see related information, you need to Login.