Synthesis and Characterization of Hollow Core-Shell ZrO2@void@BiVO4 Visible-Light Photocatalyst


Article Preview

Monoclinic scheelite BiVO4 was synthesized from a mixture of aqueous Bi(NO3)3 and NH4VO3 solutions by hydrothermal method. Then using successive coating of BiVO4 with a carbon layer and a ZrO2 layer followed by heat treatment to remove the carbon layer prepared a core-shell(ZrO2@void@BiVO4) nanoparticles with a void layer between the BiVO4 core and the ZrO2 shell. TG-DTA and IR suggest that BiVO4 was coated with ZrO2. TEM shows that there was a void space between the BiVO4 core and the ZrO2 shell. The samples were characterized by XRD and the peaks of ZrO2@void@BiVO4 suits well with the pure phase monoclinic scheelite BiVO4. And its visble-light photocatalytic activity was evaluated by the photodegradation of methylene blue(MB). The results indicated that the photocatalytic activity of ZrO2@void@BiVO4 is similar to that of pure phase BiVO4, which makes it can be used for preparing liquid-gas phase boundary visble-light photocatalyst.



Advanced Materials Research (Volumes 148-149)

Edited by:

Xianghua Liu, Zhengyi Jiang and Jingtao Han




B. H. Yao et al., "Synthesis and Characterization of Hollow Core-Shell ZrO2@void@BiVO4 Visible-Light Photocatalyst", Advanced Materials Research, Vols. 148-149, pp. 1331-1338, 2011

Online since:

October 2010




[1] A. Fujishima, K. Honda: Nature. Vol. 238(1972), p.37.

[2] M. R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahneman: Chem . Rev. Vol. 95 (1995), p.69.

[3] A. Fujishima, T.N. Rao, D.A. Tryk: J. Photochem. Photobiol. C: Photochem. Rev. Vol. 1(2000), p.1.

[4] M. C. Yan, F. Chen, J. Zhang, M. Anpo: J. Phys. Chem. B. Vol. 109(2005), p.8673.

[5] C. L. Yu, J. C. Yu: Catalysis Letters. Vol. 129(2009), p.462.

[6] L. Ge: J. Molecular Catalysis A: Chemical. Vol. 282(2008), p.62.

[7] J. Q. Yu, K. Kudo: Adv. Funct. Mater. Vol. 16(2006), p.2163.

[8] W.Z. Yin, W.Z. Wang, L. Zhou: J. Hazardous Materials. Vol. 173(2010), p.194.

[9] Y.Y. Liu, B. B. Huang, Y. Dai: Catal. Commun. Vol. 11(2009), p.210.

[10] Y. Zhou, K. Vuille, A. Heel: Applied Catalysis A: General. Vol. 375(2010), p.140.

[11] M. Gotic, S. Music, M. Ivanda: J. Mol. Struct. Vol. 744-747(2005), p.535.

[12] D. N. Ke, T. Y. Peng, L. Ma, P. Cai, P. Jiang: Appl. Catal. A. Vol. 350(2008), p.111.

[13] A. Galembeck, O. L. Alves: Thin Solid Films. Vol. 365(2000), p.90.

[14] W. Liu, L. X. Gao, G. Su, H. S. Liu, X. F. Wang, L. Zhang: Ultrasonics Sonochemistry. Vol. 17(2010), p.669.

[15] D. N. Ke, T. Y. Peng, L. Ma, P. Cai, K. Dai: Inorg. Chem. Vol. 48(2009), p.4685.

[16] R. Gorges, S. Meyer, S. Kreisel: J. Photochem Photobiol A. Vol. 167(2004), p.95.

[17] H. Nur, S. Ikeda, B. Ohtani: Chem. Commun. 2000, p.2235.

[18] H . Nur, S . Ikeda, B. Ohtani: J. Catal. Vol. 204(2001), p.402.

[19] S. Wang, T. Wang, W. X. Chen, T. Hori: Chem. Commun. 2008, p.3756.

[20] X. M. Sun, Y. D. Li: Angew. Chem. Int. Ed. Vol. 43(2004), p.597.

[21] S. Ikeda, H. Kobayashi, T. Sugita: Applied Catalysis A: General. Vol. 363(2009), p.216.

[22] P. Wilhelm, D. Stephan: J. Photochem. Photobiol. A. Vol. 185(2007), p.19.

[23] J. M. Chem, R. Cao: J. Chemical industry & engineering(In Chinese). Vol. 17(1996), p.12.

Fetching data from Crossref.
This may take some time to load.