Development of Degradable Fe-35Mn Alloy for Biomedical Application


Article Preview

As some biomedical problems require only temporary intervention, there is a clinical need for degradable biomaterials with excellent mechanical properties and controllable degradation behaviour. Although several works were carried out on both polymeric and metallic materials, no proposed degradable biomaterial fully satisfied these requirements. Therefore a new Fe-35Mn alloy has been developed as a valid and well suited alternative. The alloy was fabricated through powder metallurgy route followed by successive cold rolling and sintering cycles. This austenitic alloy exhibits a high strength and ductility, comparable to that of type 316L stainless steel. Its antiferromagnetic behaviour is not changed by cold deformation process. The alloy shows suitable degradation behaviour with a uniform corrosion mechanism and a slow release of ions that make it particularly well suited for the development of a new class of biodegradable stents.



Advanced Materials Research (Volumes 15-17)

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer and C. Ravindran




H. Hermawan et al., "Development of Degradable Fe-35Mn Alloy for Biomedical Application", Advanced Materials Research, Vols. 15-17, pp. 107-112, 2007

Online since:

February 2006




[1] J.F. Tanguay, J.P. Zidar, H.R. Phillips and R.S. Stack: Cardiol. Clinics Vol. 12 (1994), p.699.

[2] P. Erne, M. Schier and T.J. Resink: Cardiovasc. Intervent. Radiol. Vol. 29 (2006), p.11.

[3] M.P. Staiger, A.M. Pietak, J. Huadmai and G. Dias: Biomaterials Vol. 27 (2006), p.1728.

[4] H.J. Breme and J.A. Helsen: Metals as Biomaterials (John Wiley & Sons, New York 1998).

[5] J. Lévesque, D. Dubé, M. Fiset and D. Mantovani: Mater. Sci. Forum Vol. 426 (2003), p.521.

[6] C. Di Mario, H. Griffiths, O. Goktekin, N. Peeters, J. Verbist, M. Bosiers, K. Deloose, B. Heublein, R. Rohde, V. Kaese, C. Ilsley and R. Erbel: J. Interv. Cardiol. Vol. 17 (2004), p.391.


[7] F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth and H. Windhagen: Biomaterials Vol. 26 (2005), p.3557.


[8] W. Huang: Calphad Vol. 13 (1989), p.243.

[9] V.T. Witusiewicz, F. Sommer and E.J. Mittemeijer: J. Phase Equilib. and Diff. Vol. 25 (2004), p.346.

[10] J. Emsley: The Elements (Clarendon Press, Oxford 1998).

[11] I.J. Pais and J.B. Jones, Jr.: The Handbook of Trace Elements (CRC Press, Boca Raton 1997).

[12] P.P. Mueller, T. May, A. Perz, H. Hauser and M. Peuster: Biomaterials Vol. 27 (2005), p.2193.

[13] Y. -K. Lee, J. -H. Jun and C. -S. Choi: ISIJ International Vol. 37 (1997), p.1023.

[14] C.M. Li, F. Sommer and E.J. Mittemeijer: Mater. Sci. and Eng. A Vol. 325 (2002), p.307.

[15] S. Rhalmi, M. Odin, M. Assad, M. Tabrizian, C.H. Rivard and H. Yahia: Biomed. Mater. Eng. Vol. 9 (1999), p.151.

[16] S. Kujala, J. Ryhänen, A. Danilov and J. Tuukkanen: Biomaterials Vol. 24 (2003), p.4691.

[17] J.Y. Yan: Porous medicated stent (US Patent 5 843 172, 1998).

[18] MPIF Std. 15: Method for Determination of Green Strength of Compacted Metal Powders Specimens (MPIF, Princeton 1990).

[19] R.M. German: Sintering Theory and Practice (John Wiley & Sons, New York 1996).

[20] ASTM E8-04: Standard. Test Methods for Tension Testing of Metallic Materials (ASTM, West Conshohocken 2004).

[21] JCPDS-ICDD: Powder Diffraction File Database (ICDD, Philadelphia 2004).

[22] K. Mumtaz, S. Takahashi, J. Echigoya, Y. Kamada, L.F. Zhang, H. Kikuchi, K. Ara and M. Sato: J. Mater. Sci. Vol. 39 (2004), p.85.

[23] M.J. Ellenhorn, S. Schonwald, G. Ordog, and J. Wasserberger: Ellenhorn's Medical Toxicology: Diagnosis and treatment of human poisoning (Williams & Wilkins, Baltimore 1997).