Study of Indium Oxide Rod-Like Structures Synthesized Using Metalorganic Chemical Vapor Deposition


Article Preview

We have investigated the morphological changes with varying the substrate temperature in the range of 350-400°C, in synthesizing the indium oxide (In2O3) rod-like structures by using the metalorganic chemical vapor deposition method. The as-synthesized rod-like structures was aligned perpendicular to the Si substrate. X-ray diffraction (XRD) and selected area electron diffraction (SAED) analyses demonstrated that the rods had a cubic In2O3 structure. PL spectra of the In2O3 rod-like structures exhibited the visible light emission. We discussed the possible growth mechanisms.



Advanced Materials Research (Volumes 15-17)

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer and C. Ravindran




H. W. Kim and S.H. Shim, "Study of Indium Oxide Rod-Like Structures Synthesized Using Metalorganic Chemical Vapor Deposition", Advanced Materials Research, Vols. 15-17, pp. 169-174, 2007

Online since:

February 2006




[1] H. Yamaura, T. Jinkawa, J. Tamaki, K. Moriga, N. Miura and N. Yamazoe: Sensor. Actuator B Vol. 35/36 (1996), p.325.

[2] A. Gurlo, N. Barsan, M. Ivanovskaya, U. Weimer and W. Gopel: Sensor. Actuator B Vol. 47 (1998), p.92.

[3] M. Z. Atashbar, B. Gong, H. T. Sun, W. Wlodarski and R. Lamb: Thin Solid Films Vol. 354 (1999), p.222.


[4] K. Hara, T. Horiguchi, T. Kinoshita, K. Sayama, H. Sogihara and H. Arakawa: Sol. Energy Mater. Sol. Cells Vol. 64 (2000), p.115.

[5] K. L. Chopra, S. Major and D. K. Pandya: Thin Solid Films Vol. 102 (1983), p.1.

[6] H. Kominami, T. Nakamura, K. Sowa, Y. Nakanishi, Y. Hatanaka and G. Shimaoka: Appl. Surf. Sci. Vol. 113/114 (1997), p.519.

[7] J. Cui, A. Wang, N. L. Edelman, J. Ni, P. Lee, N. R. Armstrong and T. J. Marks: Adv. Mater. Vol. 13 (2001) 1476.

[8] P. Bogdanov, M. Ivanovskaya, E. Comini, G. Faliga and G. Sberveglieri: Sens. Actuators B Vol. 57 (1999), p.153.

[9] J. Zhang, X. Qing, F. H. Jiang and Z. H. Dai: Chem. Phys. Lett. Vol. 371 (2003), p.311.

[10] X. C. Wu, J. M. Hong, Z. J. Han and Y. R. Tao: Chem. Phys. Lett. Vol. 373 (2003).

[11] P. Nguyen, H. T. Ng, T. Yamada, M. K. Smith, J. Li, J. Hana and M. Meyyappan: Nano Lett. Vol. 4 (2004), p.651.

[12] J. S. Jeong, J. Y. Lee, C. J. Lee, S. J. An and G. -C. Yi: Chem. Phys. Lett. Vol. 384 (2004), p.246.

[13] Y. Li, Y. Bando and D. Golberg: Adv. Mater. Vol. 15 (2003), p.581.

[14] C. H. Liang, G. W. Meng, Y. Lei, F. Phillipp and L. D. Zhang: Adv. Mater. Vol. 13 (2001), p.1330.

[15] C. Li, D. H. Zhang, S. Han, X. L. Liu, T. Tang and C. W. Zhou: Adv. Mater. Vol. 15 (2003), p.143.

[16] J. H. Myung, H. W. Kim and S. H. Shim: Mater. Sci. Forum Vol. 310-311 (2006), p.146.

[17] B. Cheng and E. T. Samulski: J. Mater. Chem. Vol. 11 (2001), p.2901.

[18] H. W. Kim, N. H. Kim and C. Lee: Appl. Phys. A Vol. 81 (2005), p.1135.

[19] H. W. Kim and N. H. Kim: Appl. Surf. Sci. Vol. 230 (2004), p.301.

[20] Z. R. Dai, Z. W. Pan and Z. L. Wang: Adv. Funct. Mater. Vol. 13 (2003), p.9.

[21] M. -S. Lee, W. C. Choi, E. K. Kim, C. K. Kim and S. -K. Min: Thin Solid Films Vol. 279 (1996), p.1.