Processing of Ce1-xGdxO2-δ (GDC) Thin Films from Precursors for Application in Solid Oxide Fuel Cells


Article Preview

Extensive interfacial reactions are known to occur between Fe-Co based perovskite cathode materials and the standard solid oxide fuel cell (SOFC) yttria stabilized zirconia (YSZ) electrolyte. Thin films of gadolinia doped ceria (GDC) could be used as a diffusion barrier between the cathode and the electrolyte. The present work investigates spin coating thin diffusion reaction inhibiting films onto SOFC electrolytes. The chemical and structural evolution of ethylene glycol based precursor solution is studied by means of rheology, x-ray diffraction (XRD), high temperature XRD (HT-XRD), Fourier-transformed infrared spectroscopy (FTIR) and differential thermal analysis (DTA). The studies show that cerium formate is formed as an intermediate resin. Thin films, up to 500 nm thick, of gadolinia doped ceria (GDC) are successfully produced by multiple spin coating of polymerized ethylene glycol derived solutions on 200 1m thick YSZ tapes. The GDC and YSZ interfacial surface morphology and film thickness are studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). These films are shown to successfully prevent the creation of non-conducting reaction phases at the cathode-electrolyte interface by blocking interdiffusion.



Advanced Materials Research (Volumes 15-17)

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer and C. Ravindran




L. Rose et al., "Processing of Ce1-xGdxO2-δ (GDC) Thin Films from Precursors for Application in Solid Oxide Fuel Cells", Advanced Materials Research, Vols. 15-17, pp. 293-298, 2007

Online since:

February 2006




[1] W.G. Wang, R. Barfod, P.H. Larsen, K.K. Hansen, J.J. Bentzen, P.V. Hendriksen and M. Mogensen, in SOFC VIII, eds. S. C. Singhal and M. Dokiya, PV-2003-07, p.400, The Electrochemical Society Proceedings Series, Pennington, NJ (2003).

[2] H.J. Hwang, J.W. Moon, S. Lee and E.A. Lee: J. Pow. Src., 145 (2005), p.243.

[3] J.F. Gao, X.Q. Liu, D.K. Peng and G.Y. Meng: Catalysis Today, 82 (2003), p.207.

[4] A. Mai, V.A.C. Haanappel, S. Uhlenbruck, F. Tietz and D. Stoever: Solid State Ionics, 176 (2005), p.1341.

DOI: 10.1016/j.ssi.2005.03.009

[5] W.G. Wang and M. Mogensen, Solid State Ionics, 176 (2005), p.457.

[6] C.R. Dyck, Z.B. H. Yu and V.D. Krstic, Solid State Ionics, 171 (2004), p.17.

[7] C.R. Dyck, R.C. Peterson, Z.B. Yu and V.D. Krstic, Solid State Ionics, 176 (2005), p.103.

[8] K. Murata, T. Fukui, H. Abeb, M. Naito and K. Nogi: J. Pow. Src., 145 (2005), p.257.

[9] L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi and Y. Takeda: Solid State Ionics, 158 (2003), p.55.

[10] H.Y. Tu, Y. Takeda, N. Imanishi and O. Yamamoto: Solid State Ionics, 117 (1999), p.277.

[11] M. Backhaus-Ricoult: Ann. Rev. Mater. Res., 33 (2003), p.55.

[12] M. Backhaus-Ricoult: Microsc. Microanal., 10 Suppl. 2 (2004), p.8.

[13] J.B. Goodenough: Solid State Ionics, 94 (1997), p.17.

[14] B.C.H. Steele: Solid State Ionics, 129 (2000), p.95.

[15] K.Q. Huang, M. Feng, J.B. Goodenough and C. Milliken: J. Electrochem. Soc., 144 (1997), p.3620.

[16] C.C. Chen, M.M. Nasrallah and H.U. Anderson: J. Electrochem. Soc, 140 (1993), p.3555.

[17] T.L. Nguyen, K. Kobayashi, T. Honda, Y. Iimura, K. Kato, A. Neghisi, K. Nozaki, F. Tappero, K. Sasaki and H. Shirahama: Solid State Ionics, 174 (2004), p.163.

DOI: 10.1016/j.ssi.2004.06.017

[18] A. Tsoga, A. Gupta, A. Naoumidis and P. Nikolopoulos: Acta Mater., 48 (2000), p.4709.

[19] C.J. Brinker and G.W. Scherer: Sol-gel science: The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, U.S., 1990).

[20] M.P. Pechini: United States Patent 3, 330, 697, (1967).

[21] H.U. Anderson, M.M. Nasrallah and C.C. Chen: United States Patent 5, 494, 700, (1996).

[22] S. Wang, M. Awano and K. Maeda: J. Ceram. Soc. Jap., 110 (2002), p.703.

[23] L. Rose, M. Menon, K. Kammer, J.R. Bowen, P.H. Larsen, subm. to J. Am. Ceram. Soc. (Feb. 2006).

Fetching data from Crossref.
This may take some time to load.