The Analysis and Design of Microchannel Reactors

Abstract:

Article Preview

This investigation considers the development of microchannel reactors with catalystcoated walls for fuel-processing applications. In particular, the focus is to study the possibility of direct etching of microchannels into aluminum and alumina using a solid-state UV laser. Microchannels of a scale between 10μm-200μm across and 10μm-100μm have been ablated into aluminum and alumina bases. It was found that single scans resulted in narrow channels (20μm- 30μm in width) with shapes described by a Gaussian-like distribution. Multiple scans allowed fabrication of channels with a larger width, but of a similar depth. The surface quality was observed to be quite uneven, with roughness on the order of 1μm-2μm.

Info:

Periodical:

Advanced Materials Research (Volumes 15-17)

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer and C. Ravindran

Pages:

321-326

Citation:

C.A. Bellemare-Davis et al., "The Analysis and Design of Microchannel Reactors", Advanced Materials Research, Vols. 15-17, pp. 321-326, 2007

Online since:

February 2006

Export:

Price:

$38.00

[1] I. Aartun, T. Gjervan, H. Vervik, O. Görke, P. Pfeifer, M. Fathi, A. Holmen, K. Schubert: Chem. Eng. J. Vol. 101 (2004) pp.93-99.

[2] P.J. de Wild, M.J. FM. Verhaak: Catalysis Today Vol. 60 (2000) pp.3-10.

[3] A.V. Pattekar, M.V. Kothare: J. Microelectromech. Sys. Vol. 13 (2004) pp.7-18.

[4] E.C. Harvey, P.T. Rumsby, M.C. Gower, J.L. Remnant: Microstructuring by Excimer Laser, Exitech Ltd.

[5] H. Yang, C-T Pan, M-C Chou: J. Micromech. Microeng. Vol. 11 (2001) pp.94-99.

[6] E. Verpoorte, N. F. de Rooij: Proc. Of IEEE Vol. 91 (2003) pp.930-952.

[7] Y.L. Yao, H. Chen, W. Zhang: Int. J. Adv. Manuf. Tech.: Time scale effects in laser material removal: a review., (2004).

[8] P. Reuse, A. Renken, K. Haas-Santo, O. Görke, K. Schubert: Chem. Eng. J. Vol. 101 (2004) pp.133-141.

[9] R. Knitter, M.A. Liauw: Royal Soc. Chem. Ceramic microreactors for heterogeneously catalysed gas-phase reactions., (2004).

DOI: https://doi.org/10.1039/b403361b

[10] A.Y. Tonkovich, J.L. Zilka, M.J. LaMont, Y. Wang, R.S. Wegeng: Chem. Eng. Sci. Vol. 54 (1999) pp.2947-2951.

[11] D.G. Löffler, S.D. McDermott, C.N. Renn: J. Power Sources (in press), Activity and Durability of Water-Gas Shift Catalysts Used for Steam Reforming of Methanol..

DOI: https://doi.org/10.1016/s0378-7753(02)00589-x

[12] O.C. Jones: Trans. ASME, J. Fluids Eng. Vol. 110 (1976) pp.173-181.

[13] R.W. Barber and D.R. Emerson: Adv. Fluid Mech. IV (2002) pp.207-216.

[14] I. Papautsky, T. Ameel, A.B. Frazier: Proc. of ASME Int. Mech. Eng. Congress & Exp. (2001).

[15] E.R. Arkilic, K.S. Breuer, M.A. Schmidt: Appl. Microfab. Fluid Mech. Vol. FED-197 pp.57-66.

[16] E.R. Arkilic, M.A. Schmidt, K.S. Breuer: IEEE J. Microelectromech. Sys. Vol. 6 #2, pp.167-178.

[17] H. Jeong, K.I. Kim, T.H. Kim, C.H. Ko, H.C. Park, I.K. Song: J. Power Sources (2006).

[18] J.C. Ganley, K.L. Riechmann, E.G. Seebauer, R.I. Masel: J. Cat. Vol. 227 (2004) pp.26-32.

[19] K. Dou, E.T. Knobbe, R.L. Parkhill, Y. Wang: IEEE J. Sel. Top. Quant. Elec. Vol. 6 #4 (2000).

Fetching data from Crossref.
This may take some time to load.