Solidification Behavior of Fe-Base Amorphous Alloys during Twin-Roll Strip Casting


Article Preview

Solidification behavior of two Fe-base amorphous alloys during twin-roll strip casting has been investigated in the present study. Continuous cooling transformation (CCT) diagrams of both alloys were calculated using the heterogeneous nucleation theory coupled with thermal data obtained during cooling. Cooling sequence during twin-roll strip casting was also simulated. These were used for the determination of the optimum twin-roll strip casting conditions at which desirable solidification behavior could be achieved. It shows that twin-roll strip casting can continuously fabricate sheet product of Fe-base bulk amorphous alloys, despite their higher liquidus temperatures and larger differences between liquidus and glass transition temperatures (Tg) than those of other easier glass-forming bulk amorphous alloys.



Advanced Materials Research (Volumes 15-17)

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer and C. Ravindran




Y. S. Oh et al., "Solidification Behavior of Fe-Base Amorphous Alloys during Twin-Roll Strip Casting", Advanced Materials Research, Vols. 15-17, pp. 433-438, 2007

Online since:

February 2006




[1] W.H. Wang, C. Dong and C.H. Shek: Mater. Sci. Eng. R Vol. 44 (2004), p.45.

[2] B.J. Lee, J.C. Lee, Y.C. Kim and H. Lee: Met. Mater. -Int. Vol. 10 (2004), p.467.

[3] W.L. Johnson: Prog. Mater. Sci. Vol. 30 (1986), p.81.

[4] E.S. Park and D.H. Kim: Met. Mater. -Int. Vol. 11 (2005), p.19.

[5] P. Pawlik and H.A. Davies: J. Non-Crys. Solids Vol. 329 (2003), p.17.

[6] M. Stoica, S. Roth, J. Eckert, L. Schultz and M.D. Baró: J. Mag. Mag. Mater. Vol. 290-291 (2005), p.1480.

[7] H. Chirac and N. Lupu: Mater. Sci. Eng. A Vol. 375 (2004), p.255.

[8] T.D. Shen and R.B. Schwarz: Appl. Phys. Lett. Vol. 75 (1999), p.49.

[9] A. Inoue and J.S. Gook: Mater. Trans. JIM Vol. 37 (1996), p.32.

[10] A. Inoue, T. Zhang and A. Takeuchi: Appl. Phys. Lett. Vol. 71 (1997), p.464.

[11] Z.P. Lu, C.T. Liu, C.A. Carmichael and W.D. Porter: J. Mater. Res. Vol. 19 (2004), p.921.

[12] Z.P. Lu, C.T. Liu, J.R. Thomson and W.D. Porter: Phys. Rev. Lett. Vol. 92 (2004), p.245503.

[13] J. Shen, Q. Chen, J. Sun, H. Fan and G. Wang: Appl. Phys. Lett. Vol. 86 (2005), p.151907.

[14] J.G. Lee, S.S. Park, S.B. Lee, H.T. Chung and N.J. Kim: Scripta Mater. Vol. 53 (2005), p.693.

[15] S. S Park, J.G. Lee and N.J. Kim: J. Rare Earth, Vol. 22 (2004) p.78.

[16] S.S. Park, Y.M. Kim, D.H. Kang and N.J. Kim: Mater. Sci. Forum Vol. 475-479 (2005), p.457.

[17] S.B. Lee and N.J. Kim: Mater. Sci. Eng. A Vol. 404 (2005), p.153.

[18] Z.P. Lu and C.T. Liu: Acta Mater. Vol. 50 (2002), p.3501.

[19] G.T. Bae, S.B. Lee and N.J. Kim: Mater. Sci. Eng. A, in press.

[20] J.P. Hirth: Metall. Trans. A Vol. 9A (1978), p.401.

[21] D. Turnbull: Contemp. Physics Vol. 10 (1969), p.473.

[22] Y.S. Park, S.B. Lee and N.J. Kim: Mater. Trans. Vol. 44 (2003), p.2617.

Fetching data from Crossref.
This may take some time to load.