Estimation of the System Free Energy of the Lath Martensite Phase in High Cr Ferritic Steels


Article Preview

The system free energy was estimated for the martensite phase of an Fe-Cr-C ternary alloy, 12Cr2W and 12Cr2W0.5Re steels. The system free energy of the martensite phase is defined as, Gsys = G0 + Estr + Esurf , where G0 is the chemical free energy, Esurf is the interfacial energy for the boundaries in the martensite microstructure, and Estr is the elastic strain energy due to the dislocations in the martensite phase. From the experimental results on SEM/EBSD, the total interfacial energies were estimated to be 0.83J/mol for the ternary alloy and 4.8J/mol for both 12Cr2W and 12Cr2W0.5Re steels in the as-quenched state. Also, the elastic strain energies were estimated to be 7.1J/mol for the ternary alloy, 9.6J/mol for 12Cr2W steel and 9.8J/mol for 12Cr2W0.5Re steel in the as-quenched state. So, the system free energy was about 7.9J/mol for ternary alloy. On the other hand, the system free energy was about 14.4J/mol for 12Cr2W steel and 14.6J/mol for 12Cr2W0.5Re steel. So, these microstructural energies operate as a driving force for the microstructure evolution, e.g., recovery of dislocations and the coarsening of the sub-structures such as martensite-packet, -block and -lath.



Advanced Materials Research (Volumes 15-17)

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer and C. Ravindran




T. Kunieda et al., "Estimation of the System Free Energy of the Lath Martensite Phase in High Cr Ferritic Steels", Advanced Materials Research, Vols. 15-17, pp. 690-695, 2007

Online since:

February 2006




[1] T. Fujita: ISIJ Int., 32 (1992), pp.175-181.

[2] Y. Murata, M. Morinaga, R. Hashizume, K. Takami, T. Azuma, Y. Tanaka and T. Ishiguro: Mater. Sci. Eng., A136 (2000), pp.251-261.

[3] Y. Murata, T. Koyama, M. Morinaga and T. Miyazaki: ISIJ Int., 42 (2002) pp.1423-1429.

[4] T. Miyazaki and T. Koyama: Mater. Sci. Eng., A136 (1991), pp.151-159.

[5] Y. Ono, K. Kimura and T. Watanabe: Computer Assisted Microstructure Control of Steels, (2000) pp.99-108.

[6] H. Suzuki: Teni-ron Nyumon, (Agni, Japhan, 1967), p.70.

[7] Kinzoku data book, (The Japan Institute of Metals, 1984), p.35.

[8] M. Wilkins: Phys. Stat. Sol. 2 (1970), pp.359-370.

[9] T. Ungar, I. Dragomir, A. Revesz and A. Borbely: J. Appl. Cryst., 32 (1999), pp.992-1002.

[10] F. Yin, T. Hanamura, O. Umezawa and K. Nagai: Mater. Sci. Eng., A354 (2003), pp.31-39.

[11] T. Unger, J. Gubicza, G. Ribarik and A. Borbely: J. Appl. Cry., 34 (2001), pp.298-310.

[12] T. Unger and G. Tichy: Phys. Stat. Sol., 171 (1999), pp.425-434.

[13] P. Dagupta: FIZIKA A (Zagreb), 9 (2000) 2, pp.61-66.

Fetching data from Crossref.
This may take some time to load.