Surface Modification of TiZr Alloy for Biomedical Application


Article Preview

Titanium and some of its alloys are widely used as load-bearing implant materials. In particular, titanium-zirconium (Ti-Zr) alloys have a high potential for biomedical applications due to the excellent biocompatibility of both Ti and Zr. Nevertheless, the surfaces of the Ti-Zr alloys need to be modified to provide the implant material’s bioactivity. In the present study, an alkali-heat (AH) treatment process followed by the soaking in simulated body fluid (SBF) was attempted for the preparation of calcium phosphate (CaP) coatings on the surface of the TiZr alloy. Phase transformation, surface morphology, and interfacial microstructure were investigated using scanning electron microscope (SEM) with an energy-dispersive electron probe X-ray analyser (EDS). The results indicate that the AH treatment produced a nano-porous bioactive sodium titanate / zirconate hydrogel surface layer which induced the deposition of a Ca-P layer during soaking in the SBF. This Ca-P layer on the TiZr alloy surface can be expected to bond to the surrounding bones directly after implantation.



Advanced Materials Research (Volumes 15-17)

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer and C. Ravindran




X.B. Chen et al., "Surface Modification of TiZr Alloy for Biomedical Application", Advanced Materials Research, Vols. 15-17, pp. 89-94, 2007

Online since:

February 2006




[1] J.B. Park and R.S. Lakes: Biomaterials: an introduction (Plenum Press New York 1992).

[2] T. Kokubo: Biomaterials Vol. 12 (1991), p.155.

[3] L.L. Hench: J. Am. Ceram. Soc. Vol. 81 (1998), p.1705.

[4] Y. Nakashima, K. Hayashi, T. Inadome, K. Uenoyama, T. Hara, T. Kanamaru, Y. Sugioka and I. Noda: J. Biomed. Mater. Res. Vol. 35 (1997), p.287.

[5] J.B. Park and G.H. Kenner: Biomater. Med. Dev. Artif. Organs Vol. 4 (1976), p.225.

[6] D.M. Ferris, G.D. Moodie, P.M. Dimond, C.W. Gioranni, M.G. Ehrlich and R.F. Valentini: Biomaterials Vol. 20 (1999), p.2323.

[7] K.A. Gross and C.C. Berndt: J. Mater. Sci. Mater. Med. Vol. 5 (1994), p.219.

[8] C.E. Wen, Y. Yamada, K. Shimojima, Y. Chino, H. Hosokawa and M. Mabuchi: J. Mater. Res. Vol. 17 (2002), p.2633.

[9] C. Ohtsuki, H. Iida, S. Hayakawa and A. Osaka: J. Biomed. Mater. Res. Vol. 35 (1997), p.39.

[10] P. Li and K. d. Groot: J. Biomed. Mater. Res. Vol. 27 (1993), p.1495.

[11] H.B. Wen, J.G.C. Wolke, J.R. Wijn, Q. Liu, F.Z. Cui and K. d. Groot: Biomaterials Vol. 18 (1997), p.1471.

[12] W.Q. Yan, T. Nakamura, M. Kobayashi, H.M. Kim, F. Miyaji and T. Kokubo: J. Biomed. Mater. Res. Vol. 37 (1997), p.265.

[13] H.M. Kim, F. Miyaji, T. Kokubo and T. Nakamura: J. Biomed. Mater. Res. Vol. 32 (1996), p.409.

[14] H.M. Kim, F. Miyaji, T. Kokubo and T. Nakamura: J. Biomed. Mater. Res. Appl. Biomater. Vol. 38 (1997), p.121.

[15] H.M. Kim, F. Miyaji, T. Kokubo, S. Nishiguchi and T. Nakamura: J. Biomed. Mater. Res. Vol. 45 (1999), p.100.

[16] T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi and T. Yamamuro: J. Biomed. Mater. Res. Vol. 24 (1990), p.721.

[17] B.H. Lee, Y.D. Kim, J.H. Shin and K.H. Lee: J. Biomed. Mater. Res. Vol. 61 (2002), p.466.

[18] M.M. Pereira and L.L. Hench: J. Sol-gel Sci. Tech Vol. 7 (1996), p.59.

[19] C. Larsson, P. Thomsen, B.O. Aronsson, M. Rodahl, J. Lausmaa, B. Kasemo and L.E. Ericson: Biomaterials Vol. 17 (1996), p.605.