Tin Oxide One-Dimensional Nanomaterials Grown on Silver-Coated Substrates


Article Preview

We demonstrated the production of tin oxide (SnO2) one-dimensional (1D) nanostructures on silver (Ag)-coated substrates by the thermal evaporation of Sn powders. Scanning electron microscopy revealed that the product consisted of 1D nanomaterials with average diameters or widths in the range of 50-1300 nm. X-ray diffraction and high resolution electron microscopy coincidentally indicated that the nanostructures were mainly single-crystalline rutile structure of SnO2. The PL measurement with the Gaussian fitting showed visible light emission bands centered at 579 nm and 624 nm.



Advanced Materials Research (Volumes 15-17)

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer and C. Ravindran




H. W. Kim et al., "Tin Oxide One-Dimensional Nanomaterials Grown on Silver-Coated Substrates", Advanced Materials Research, Vols. 15-17, pp. 947-952, 2007

Online since:

February 2006




[1] B. Mayers and Y. Xia: Adv. Mater. Vol. 14 (2002), p.279.

[2] D.P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou and S. Q. Feng: Appl. Phys. Lett. Vol. 72 (1998), p.3458.

[3] J. Y. Park, C. -W. Oh, J. -J. Kim and S. S. Kim: Mater. Sci. Forum Vol. 510-511 (2006), p.946.

[4] M. Gao, S. M. Huang, L. M. Dai, G. G. Wallace, R. P. Gao and Z. L. Wang: Angew. Chem. Int. Ed. Vol. 39 (2000), p.3664.

[5] G. Ansari, P. Boroojerdian, S. R. Sainkar, R. N. Karekar, R. C. Alyer and S. K. Kulkarni: Thin Solid Films Vol. 295 (1997), p.271.

[6] S. Ferrere, A. Zaban and B. A. Gsegg: J. Phys. Chem. B Vol. 101 (1997), p.4490.

[7] Y. S. He, J. C. Campbell, R. C. Murphy, M. F. Arendt and J. C. Swinnnea: J. Mater. Res. Vol. 8 (1993), p.3131.

[8] W. Dazhi, W. Shulin, C. Jun, Z. Suyuan and L. Fangqing: Phys. Rev. B Vol. 49 (1994), p.282.

[9] R. -Q. Zhang, Y. Lifshitz and S. -T. Lee: Adv. Mater. Vol. 14 (2003), p.1029.

[10] Z. L. Wang and Z. Pan: Adv. Mater. Vol. 14 (2002), p.1029.

[11] X. S. Peng, L. D. Zhang, G. W. Meng, Y. T. Tian, Y. Lin, B. Y. Geng and S. H. Sun: J. Appl. Phys. Vol. 93 (2003), p.1760.

[12] C. H. Park and Y. G. Son: Mater. Sci. Forum Vol. 510-511 (2006), p.1130.

[13] L. F. Dong, J. Jiao, M. Coulter and L. Love: Chem. Phys. Lett. Vol. 376 (2003), p.653.

[14] J. Park, H. -H. Choi, K. Siebein and R. K. Singh: J. Cryst. Growth Vol. 258 (2003), p.342.

[15] Z. Q. Liu, Z. W. Pan, L. F. Sun, D. S. Tang, W. Y. Zhou, G. Wang, L. X. Qian and S. S. Xie: J. Phys. Chem. Solids Vol. 61 (2000), p.1171.

[16] T. Y. Kim, S. H. Lee, Y. H. Mo, H. W. Shim, K. S. Nahm, E. -K. Suh, J. W. Yang, K. Y. Lim and G. S. Park: J. Cryst. Growth Vol. 257 (2003), p.97.

[17] H. W. Kim and N. H. Kim: Appl. Phys. A Vol. 80 (2005), p.537.

[18] S. S. Fan, J. Cao, H. Y. Dang, Q. Gu and J. H. Zhao: Mater. Sci. Eng. C 15, 295 (2001).

[19] J. Zhang, X. Qing, F. Jiang and Z. Dai: Chem. Phys. Lett. Vol. 371 (2003), p.311.

[20] J. Guojian, Z. Hanrui, Z. Jiang, R. Meiling, L. Wenlan, W. Fengying and Z. Baolin: J. Mater. Sci. Vol. 35 (2000), p.63.

DOI: https://doi.org/10.1023/a:1004732314397

[21] Z. R. Dai, Z. W. Pan and Z. L. Wang: Adv Funct. Mater. Vol. 13 (2003), p.9.

[22] D. -W. Yuan, R. -F. Yan and G. Simkovich: J. Mater. Sci. Vol. Vol. 34 (1999), p.2911.

[23] H. W. Kim and S. H. Shim: J. Korean Phys. Soc. Vol. 47 (2005), p.516.

[24] B. Cheng, J. M. Russell, W. Shi, L. Zhang and E. T. Samulski: J. Am. Chem. Soc. Vol. 126 (2004), p.5972.

[25] Jr H. He, T. H. Wu, C. L. Hsin, K. M. Li, L. J. Chen, Y. L. Chueh, L. J. Chou and Z. L. Wang: Small Vol. 2 (2006), p.116.

[26] J. Hu, Y. Bando, Q. Liu and D. Goldberg: Adv. Func. Mater. Vol. 13 (2003), p.493.

[27] S. -S. Chang and D. K. Park: Mater. Sci. Eng. B Vol. 95 (2002), p.55.

[28] D. Maestre, A. Cremades and J. Piqueras: J. Appl. Phys. Vol. 95 (2004), p.3027.