Comparison of Hollow-Porous and Solid Carbon Fibers as Microwave Absorbents

Abstract:

Article Preview

A series of polyacrylonitrile-based hollow-porous and solid carbon fibers were prepared by pyrolysis of polyacrylonitrile-based hollow-porous and solid fibers at the same condition. The microstructure, composition, surface electrical conductivity, electromagnetic parameters and reflectivity of carbon fibers were studied. The microwave absorbing properties of two kinds of carbon fibers as microwave absorbents were parallel investigated. Results show that the apparent density of the hollow-porous carbon fibers is lower than that of the solid carbon fibers due to their hollow-porous structure. The surface electrical conductivity of single solid carbon fiber is nearly 10 times that of the hollow-porous carbon fiber. The -10dB bandwidths of solid carbon fiber composites carbonized at 850 and 950°C are both 0GHz, while those of the corresponding hollow-porous carbon fiber composites are up to 3.05 and 2.62GHz, respectively. Results indicate that the microwave absorbing properties of the hollow-porous carbon fiber composites are better than those of solid carbon fiber composites.

Info:

Periodical:

Advanced Materials Research (Volumes 150-151)

Edited by:

Jinglong Bu, Zhengyi Jiang and Sihai Jiao

Pages:

1336-1342

DOI:

10.4028/www.scientific.net/AMR.150-151.1336

Citation:

W. Xie et al., "Comparison of Hollow-Porous and Solid Carbon Fibers as Microwave Absorbents", Advanced Materials Research, Vols. 150-151, pp. 1336-1342, 2011

Online since:

October 2010

Export:

Price:

$35.00

[1] V. M. Petrov, V. V. Gagulin: J Inorg Mater 2001; 37(2): 93-98.

[2] R. C. Che, L. M. Peng, X. F. Duan, Q. Chen, X.L. Liang: Adv Mater 2004; 16(5): 401-405.

[3] F. Luo, D. M. Zhu, W. C. Zhou: Ceram Int 2007; 33: 197-200.

[4] H. Y. Lin, H. Zhu, H. F. Guo, L. F. Yu: Mater Lett 2007; 61: 3547-3550.

[5] Z. Y. Chu, H. F. Cheng, Y. J. Zhou, G. P. Tang, S. J. Cheng, W. Xie: Mater Sci Technol 2006; 22(1): 72-76.

[6] D. D. L. Chung: Carbon 2001; 39: 1119-1125.

[7] D. Zabetakis, M. Dinderman, P. Schoen: Adv Mater 2005; 17(6): 734-738.

[8] N. Q. Zhao, T. C. Zou, C. S. Shi, J. J. Li, W. K. Guo: Mat Sci Eng B 2006; 127: 207-211.

[9] C. P. Neo, V. K. Varadan: IEEE T Electromagn C 2004; 46(1): 102-106.

[10] G. Z. Shen, Z. Xu, Y. Li: J Magn Magn Mater 2006; 301: 325-330.

[11] H. A. Tsai, Y. S. Ciou, C. C. Hu, K. R. Lee, D. G. Yu, J. Y. Lai: J Membrane Sci 2005; 255: 33-47.

[12] Y. J. Lan, S. C. Tai, R. Raj: Carbon 2007; 45: 166-172.

[13] J. F. Sun, G. X. Wu, Q. R. Wang: J Mater Sci 2005; 40: 663-668.

[14] M. C. Yang, M. T. Chou: J Membrane Sci 1996; 116: 279-291.

[15] P. S. Tin, Y. C. Xiao, T. S. Chung: Separation & Purification Reviews 2006; 35: 285-318.

[16] W. Xie, H. F. Cheng, Z. Y. Chu, Z. H. Chen: J Cent South Univ Technol 2007; 14(s2): 112-115.

[17] W. Xie, H. F. Cheng, Z. Y. Chu, Z. H. Chen: J Inorg Mater 2008; 23(3): 481-485. (in Chinese).

[18] S. Seo, W. S. Chin, D. G. Lee: Compos Struct 2004; 66: 533-542.

[19] K. L. John, V. J. Judith, G. Sekaran: Mater Chem Phys 2005; 91: 471-476.

[20] C. Pan, L. Q. Ge, Z. Z. Gu: Comp Sci Tech 2007; 67: 3271-3277.

[21] Cla'udio de Almeida Filho, J. G Aldo. Zarbin: Carbon 2006; 44: 2869-2876.

[22] J. C. Su, A. C. Lua: J Membrane Sci 2007; 305: 263-270.

[23] Z. S. Quan. The theory of electromagnetic field. Chengdu, Press of University of Electronic Science and Technology, 1995: 220-222.

In order to see related information, you need to Login.