Micro-Magnetic Field at the Surface of Surgical Materials for Biocompatibility Improvement


Article Preview

TiO2 thin film containing SrFe12O19 powders on the surface of 316L stainless steel and NiTi alloy was prepared through sol-gel method and micro-magnetic field was established by the magnetization process applied on the coating. The coating film was characterized by x-ray diffraction (XRD) and the surface morphology of the coating was observed by scanning electron microscope (SEM). This blood compatibility thin film was evaluated by dynamic cruor time of blood test.The results show that dynamic cruor time of blood is prolonged by the micro-magnetic field of the thin film, indicating improved blood compatibility.



Advanced Materials Research (Volumes 152-153)

Edited by:

Zhengyi Jiang, Jingtao Han and Xianghua Liu




Q. Liu et al., "Micro-Magnetic Field at the Surface of Surgical Materials for Biocompatibility Improvement", Advanced Materials Research, Vols. 152-153, pp. 1441-1444, 2011

Online since:

October 2010




[1] B. Thierry, Y. Merhi, L. Bilodeau, et al. Nitinol versus stainless steel : acute thrombogenicity study in an ex vivo porcine model. Biomaterials 2002; 23: 2997-3005.

DOI: https://doi.org/10.1016/s0142-9612(02)00030-3

[2] G. Tepe, H.P. Wendl, S. Khorchidi, J. Schmehl, J, Wiskirchen, B. Pusich, etal. Thrombogenicity of various endovascular stent types: an in vitro evaluation. J Vasc Interv 2002; 13(10): 1029-35.

DOI: https://doi.org/10.1016/s1051-0443(07)61868-5

[3] R.W. Poon, K.W. Yeung, X.Y. Liu, et al. Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys. Biomaterials 2005; 26(15): 2265-2272.

DOI: https://doi.org/10.1016/j.biomaterials.2004.07.056

[4] G. Tepe, J. Schmehl, H.P. Wendl, S. Sivio, et al. Reduced thrombogenicity of nitinol stents—In vitro evaluation of different surface modification and coatings. Biomaterials 2006; 27: 643-650.

DOI: https://doi.org/10.1016/j.biomaterials.2005.06.004

[5] D.A. Armitage, T.L. Parker, D.M. Grant. Biocompatibility and hemocompatibility of surface-modified NiTi alloys. J Biomed Mater Res A 2003; 66(1): 129-137.

DOI: https://doi.org/10.1002/jbm.a.10549

[6] I. Tsyganov, M.F. Maitz, E . Wieser, et al. Structure and properties of titanium oxide layers prepared by metal plasma immersion ion implantation and deposition. Surface Coatings Technol 2003; 174-175(9-10):591-596.

DOI: https://doi.org/10.1016/s0257-8972(03)00687-x

[7] M.I. Jones, I.R. McColl, D.M. Grant,et al. Haemocompatibility of DLC and TiC-TiN interlayers on titanium. Diamond Relat Mater 1999; 8(2-5): 457-462.

DOI: https://doi.org/10.1016/s0925-9635(98)00426-9

[8] J.X. Liu, D.Z. Yang, F. Shi, etal. Sol-gel deposited TiO2 film on NiTi surgical alloy for biocompatibility improvement. Thin Solid Film, 2003; 429: 225-230.

DOI: https://doi.org/10.1016/s0040-6090(03)00146-9

[9] B.D. Ratner. The catastrophe revisited: Blood compatibility in the 21st century [J]. Biomaterials, 2007; 28: 5144~5147.

DOI: https://doi.org/10.1016/j.biomaterials.2007.07.035

[10] K.C. Dee, D.A. Puleo, R. Bizios, AN INTRODUCTION TO Tissue-Biomaterial Interactions, John Wiley & Sons, Inc., Hoboken, New Jersey , 2002. (ISBN 0-471-25394-4).

DOI: https://doi.org/10.1002/0471270598

[11] M.D. Simon, A.K. Geim. Diamagnetic levitation: Flying frogs and floating magnets. Journal of Applied Physics 2000, 87(9): 6200-6204.

DOI: https://doi.org/10.1063/1.372654

[12] M.V. Berry, A. K. Geim. Of flying frog and levitrons, European Journal of Physics, 1997, Vol. 18: 307-313.